Math 167: General Course Outline

Catalog Description

167. Mathematical Game Theory. (4) Lecture, three hours; discussion, one hour. Requisite: course 115A. Quantitative modeling of strategic interaction. Topics include extensive and normal form games, background probability, lotteries, mixed strategies, pure and mixed Nash equilibria and refinements, bargaining; emphasis on economic examples. Optional topics include repeated games and evolutionary game theory. P/NP or letter grading.

Schedule of Lectures

Lecture	Section	Topics
1	0.1 (p. 3-8), 0.1.3, 0.2, 0.3, 0.4.1	Strategic Voting, Second Price Auction, Non-cooperative, Nash Equilibrium, Cournot Duopoly
2	1.1-1.3	Trees, Nim, Strategies
3	1.4-1.5	Zermelo's Algorithm, Binary Analysis of Nim, Begin Zermelo's Theorem
4	1.7-1.9	Zermelo's Theorem, Chess, Value of a Strictly Competitive Game, Subgame Perfect Equilibrium, Team Games, etc.
5	2.1	Review of Probability, Bayes Rule
6	2.2-2.3	Lotteries, Expectation, Game Values
7	2.4-2.5	Duel, begin Parcheesi
8	Exercises	Parcheesi, Do problems in Class (e.g. Monty Hall, ex. 2.6.26, hat problem)
9	3.1-3.2, 3.4	Preferences, Utility, Optimizing Utility
10	3.4	Von Neuman-Morgenstern Utility, examples
11	3.4-3.5	St. Petersburg Paradox, Risk Averse, Risk Loving
12	4.1	Payoff Functions via Expectation; Strategic Form of Duel, Bimatrices, Finding Pure Strategy NE's
13	4.6	Domination
14	5.2-5.3	Convexity, Supporting Lines, Cooperative Payoff Regions, Pareto Efficiency
15		Midterm
16	5.4-5.5	Bargaining Sets, (Generalized) Nash Bargaining Problems and Solutions, Methods of Computation
17	5.5	Nash Axioms, Nash's Theorem and Proof
18	6.2-6.4	Minmax & Maxmin, Security Strategies, Mixed Strategies
19	6.4	Mixed Strategy Payoffs, Computing Mixed Security Strategies via Maxmin Analysis (Examples)
20	6.4-6.6	Maxmin <minmax, games="" minmax="" of="" separation<="" solving="" statement="" td="" theorem,="" via=""></minmax,>
21	6.7 or 6.8	Battleships or Inspection
22	7.1	Best Response (=Reaction Curve) Analysis of Bimatrix Games, Prisoner's Dilemma & Chicken
23	7.2	Relation of NE's to Maxmin Solutions of Associated Zero-sum Games and Pareto Optimality, Correlated Equilibria
24		Theorem that $(p_1,, p_n)$ is an NE iff supp (p_i) is contained in imax $\{\pi_i(p_1,, p_{i-1}, -, p_i)\}$
		+1,, p _n)} for all i. Methods of computing Nash equilibria (2 player 2x3, 3x3 cases)
25	ĺ.	Computations, Word problems
26	7.2	Duopoly (Cournot, Stackelberg), Oligopoly, Perfect Competition
27	7.7	Sketch of Proof of Existence of NE

file: ///C|/Documents%20 and%20 Settings/tasja/Desktop/Nataasja's%20 Stuffs/pdfs/math167 index.shtml and the setting of the

28 . Review

Comments

Outline update: D. Blasius, 5/02

NOTE: While this outline includes only one midterm, it is strongly recommended that the instructor considers giving two. It is difficult to schedule a second midterm late in the quarter if it was not announced at the beginning of the course.

For more information, please contact Student Services, <u>ugrad@math.ucla.edu</u>.