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The pseudo-finite world

Theorem (C. Jordan)

Let G be a finite subgroup of GLn(C). Then |G | has an Abelian
subgroup of bounded index (depending only on n.)

“Il importe . . . de bien préciser le sens que nous attachons aux mot
limité et illimité. Ils ne sont pas synonymes de fini et infini . . .”

I use of char. 0: no non-identity unipotent element.

I In Équations diférentielles linéaires à intégrale algébrique,
Crelle 1878, pp. 89-215:

I Differential Galois theory (Picard-Vessiot), 2pp. Above
pseudo-finite theorem: 13pp. Determination of the (finitely
many) finite subgroups of GL2 and GL3(C), 111pp.

I Glimpses by: finite group theory, algebraic geometry, additive
combinatorics, dynamical systems, model theory.



Unbounded finite world is as rich as infinite world

... if one considers the syntax of formal statements about infinite
objects (Gödel, 1930)
... or if one filters the quantifiers (in Paris-Harrington, 1977).
Consider finite structures A with sub-universes Aα ⊂ Aβ ⊂ · · ·A
(α, β, · · · ∈ I , I a linearly ordered set.)
(∀x)(∃y)(...) interpreted as: (∀x ∈ Aα)(∃y ∈ Aβ)(....) - any
α < β ∈ I .
This is coherent, if I is sufficiently Ramsey.
Skolem’s paradox crosses the finite/infinite boundary: any sentence
with an infinite model has a finite quasi-model (and vice versa).
However, Ramsey tends to force: |Aα| <<< |Aβ| <<< |A|.



View from the classification of finite simple groups,

A large finite simple group is:
Altn,
or an object of algebraic geometry
e.g. SL4(Fq),
or of high-dimensional linear algebra
SLn(F2)
or a combination of the two parameters SLn(Fq)

Follows from classification of all finite simple groups, concentrating
on sporadics; no pseudo-finite proof known. (Compare Jordan.)
Gorenstein’s reason: difficulty of using simplicity (or for group
actions, primitivity: no invariant equivalence relation).
Properties of all structures equivalent to classification of primitive
ones?



In these talks, I would like to describe a model-theoretic viewpoint,
born in the study of uncountably categorical structures, that has
proved useful in several pseudo-finite regimes: bounded rank,
bounded orbit spaces, and now of approximate subgroups in the
sense of Tao.
I will describe some developments that have taken place in parallel
in model theory and additive combinatorics (unbeknownst to
either); and some that have not yet found their parallels.
In model theory, the basic language is based on dimension theories
and notions of genericity or randomness. The most classic
example: dimension of an algebraic variety, generic points.



Background: approximate orbits

Let G be a group.
Assume G =< g1, . . . , gn >, and G acts on a set Ω.
Y ⊂ Ω, |giY − Y | < ε|Y |.
How close is Y to being a G -orbit?
Expanders, amenability, property τ , . . . are defined in these terms.
Representation theory version:

|giv − v | < ε

(consider the characteristic function v of Y .)

Example

[−n, n] ⊂ Z. Almost invariant under ±1.
But no such approximately fixed sets for +1, ·2, or for Cayley
graphs of two-generated free group, or SL3(Z).



Approximate substructures for binary operations

Example

[−n, n] is 99%-closed under ±1, but only 50%- closed under
addition.

Proposition (99 % theory)

Let X ⊆ G . Suppose xy ∈ X for 99.9% of all pairs (x , y) ∈ X 2.
Then there exists H ≤ G such that almost all x ∈ X are in H, and
vice versa.

Weil, algebraic geometry setting: ”99 %” means: away from a
lower-dimensional subvariety. Actually Weil assumes no ambient
group (local group / group chunk seting.)

Proof.
Let X ′ = {b ∈ X : bX =99% X}. Then |X ′| ≥ .9|X |.
Gap: if aX =80% X then aX =98% X : Take b ∈ X ′ ∩ a−1X ′. So
a, ab ∈ X ′. Then aX =99% a(bX ) = (ab)X =99% X .
Let H = {a ∈ G : aX =90% X} = {a ∈ G : aX =80% X}
Best bounds by Ben-or, Coppersmith, Luby, Rubinfeld.



1 % theory

A cube X = Πi [0,mi ] ⊂ Zn satisfies: |X + X | ≤ 2n|X |. So does
any homomorphic image of X , or of a translate.

Theorem (Freiman 1959)

Let X ⊂ Z and suppose |X + X | ≤ k|X |. Then X forms k ′% of a
generalized arithmetic progression.

Similar examples in nilpotent groups; classification by Green-Rusza,
Fisher, Breuillard, Tao.
Compare: simplicity.



Groups of polynomial growth

Theorem (Gromov 81)

Let G be a group generated by a finite subset X = X−1. Assume
|X n| ≤ Cnk . Then G is nilpotent-by-finite.

Note e.g. if |X n| = Cnk , then X 2n is a 2k - approximate subgroup.
Gromov’s proof:

I ”Looking at G from afar”, Gromov sees a locally compact
space. Montgomery-Zippin is used, in the main case, to find a
homomorphism to a linear group, essentialy to the
automorphism group of this space. This is the heart of the
proof.

I The image of G in a linear group must be solvable-by-finite
(Tits’ alternative.)

I The solvable case, conjectured by Bass-Serre, was proved by
Milnor-Wolf.

I Gromov thus finds a homomorphism of a finite index subgroup
to Z; shows the kernel has polynomial growth of lower order.
Induction shows G is virtually solvable.



Sum-product phenomenon

Theorem (Erdös - Szemerédi 1983)

Let X be a finite subset of R. Then |X + XX | ≥ C |X |1+ε.
Conjecture: |X |2−ε.

Theorem (Edgar-Miller 2003)

Let R be a Borel subring of R. Then R has Hausdorff dimension 0
or R = R.

Theorem (Bourgain-Katz-Tao 2004)

|X + XX | ≥ C |X |1+ε for finite fields. (|X | not too large.)

This can be viewed as giving the structure of approximate
subgroups of GmnGa (upper triangular part of SL2(C).)
Applications to expanders, sieves, concentrators, . . . Bourgain,
Gamburd, Sarnak, . . .: see talks by Avi Wigderson, Ben Green.



Approximate subgroups of non-commutative groups

G a group. X denotes a subset, with 1 ∈ X = X−1.
Two subsets X ,Y of G are (k)-commensurable if each is contained
in the union of finitely many (k-) left cosets of the other.
X is a k- approximate subgroup if 1 ∈ X = X−1X , and XX is
k-commensurable with X .
Tao: If |XX | ≤ k1|X |, then X is contained in a finite union of
cosets of a k2- approximate group X ′, with |X ′/X | ≤ k3; k2, k3 are
polynomially bounded in terms of k .

Problem (Bourgain, Tao, E. Lindenstrauss, Breuillard)

Describe the structure of approximate subgroups. Modulo
nilpotent groups, are they close to actual subgroups?



Analogs

Theorem (Zilber)

T a theory with finite Morley dimension. G a group. X a definable
subset, such that dim(XX ) = dim(X ) and multiplicity = 1. Then
there exists a definable subgroup H, such that
dim(X4Ha) < dim(X ) = dim(H).

Pseudo-finite interpretation: |X4Ha|/|X | → 0.

Theorem
Finite S1 dimension. G a group. X a definable subset, such that
dim(XX ) = dim(X ). Then there exists a definable subgroup H,
a ∈ G , dim(X ∩ Ha) = dim(H) = dim(C ).

Pseudo-finite interpretation: |X ∩ C | ≥ c|X |, c > 0.
Similar results for rings.



Aside: Strong approximation

Corollary (Matthews, Vaserstein, Weisfeiler 1984; Nori
1987,Gabber 1988)

Let Γ be a finite subgroup of GLn(Fp), generated by unipotents.
Then Γ is k- commensurable with G (Fp), G an algebraic group; k
a constant independent of p.

Idea of proof: pass to pseudo-finite fields; S1 dimension theory;
take a product X = X1...Xl of copies of (Fp,+) in GLn(Fp), so
that dim(XX ) = dim(X ); obtain H.
For simple G , one unipotent in Γ suffices; and is provided by
Jordan’s theorem.
The case of GLn(Fpm): Larsen-Pink.



Linear groups
Let G be a simple algebraic group, e.g. G = SLn.

Theorem
Let F be a finite field and let G = G (F ). Suppose that X ⊆ G is a
k-approximate subgroup that generates G . Then X is bounded, or
|G |/|X | is bounded.

Theorem (Breuillard-Green-Tao 2010)

Moreover the bound has the form kC , with C independent of F ,X .

Similar results by Pyber-Szabo. Earlier: Helfgott , SL2,SL3.

Corollary

Let k ∈ N, and let L be a linear group, or a connected Lie group.
If X is a k-approximate subgroup of L, then there exist a solvable
subgroup S of L such that X is contained in ≤ k ′ = k ′(k , L) cosets
of S.

Approximate subgroups of solvable groups were further reduced to
nilpotent gruops in case G is strongly torsion-free (Tao) or solvable
groups or linear over C (Breuillard-Green).



Groups with large approximate subgroups

Theorem
Let G0 be a finitely generated group, k ∈ N. Assume G0 has a
cofinal family of k-approximate subgroups (i.e. any finite F0 ⊂ G0

is contained in one.) Then G0 is nilpotent-by-finite.

The strategy of proof is closely patterned after Gromov’s. But: (i)
a different connection to Lie groups; using measure theory and not
a metric. (ii) induction on Lie dimension, in place of the order of
polynomial growth. Main point: a canonical connection between
approximateness and Lie groups, visible in the model-theoretic
boundary.



A (rough and partial) dictionary
structure A sequence An of finite structures
definable subset / subgroup subset / subgroup
finite bounded
nonforking positive measure
dimension α size ∼ nα

stability 99% world
independent amalgamation triangle removal
dimension theorem

relative triangle removal
stabilizer Balog-Szemerédi-Tao-Sanders· · ·∧

-definable subgroup with approximate subgroup
locally compact quotient *
compact Lascar group compact groups in Furstenberg analysis
boundedly closed base relative weak mixing
domination
internality, liaison groups
modularity
trichotomy



Model theoretic topology

Let A be the class of all (G ,X , µ, δ) with: G a group, X a finite,
k-approximate subgroup, µ(Y ) = |Y |/|X |,
δ(Y ) = | log(Y )|/| log(X )|
A basic open set is the collection of all pairs (G ,X ) described by
some condition (sentence) formulated using starting from the basic
data G ,X , ·, using Boolean operators ∧,¬, and quantifiers. Along
with (∃x), we allow cardinality comparison quantifiers.

Example

I G is (not) 2-nilpotent”,

I ”for at least 90% of all elements a ∈ G , the centralizer
T = CG (a) satisfies |N(T )/T | ≤ 2

I |T 4| ≥ |G |
I XX is contained in ≤ k cosets of X .



Model theoretic compactification

Let Ā be the closure of A in the class of all structures (G ,X , µ, δ).
These are structures (G ,X , ·, µ, δ) with (G , ·) a group, X a subset,
in fact a k-approximate subgroup.
µ extends to a countably additive measure with 0 < µ(X ) <∞. X
is no longer finite, but µ(XXX ) ≤ k ′µ(X ). We will say that X is a
near-subgroup. δ a real-valued dimension; to be discussed later.
Ā is compact in the topology described above.
The elements of Ā can be taken to be ultraproducts of elements of A
along an ultrafilter u. One can (maximall) take a definable subset of

Πi→uAn
i to be one of the form Πi→uSi , Si ⊂ An

i .



Approximateness subgroups and Lie groups.

Example

L be a connected (non-compact) Lie group, X a compact
neighborhood of 1. Then the Haar measure µ measures
G =< X >, but X is not commensurable to a subgroup.



Theorem
Let (G ,X , µ, δ) ∈ Ā.

1. There exists a homomorphism h from a subgroup of G to L a
connected, finite-dimensional Lie group L.

2. If K ⊂ U ⊂ L, K compact, U open, then there exists a
definable D, commensurable with X , with
h−1(K ) ⊂ D ⊂ h−1(U).

3. We can take L to have no compact normal subgroups; in this
case L is uniquely determined; dim(L) is called the Lie
dimension of X .

Example

If the Lie dimension is 0, L compact, then taking K = U = L we
find a definable subgroup of G , commensurable with X .



Construction of a locally compact group H :

Lemma (Stabilizer / Balog-Szemeredi-Tao-Sanders)

X [n] can be defined for n ∈ Z, so that X (0) = X−1X and
X [n]X [n] ⊆ X [n + 1], and 0 < µ(X [n]) <∞.

Construction
of quotient. H = limn→∞ lim−∞←m X [n]/X [m]

Where:

lim
←−

X/X [m] = {(a1, a2, . . .) : ama−1m′ ∈ X [−(m+2)], m = 1, 2, . . .}/ ∼

a ∼ b iff for all m, amb−1m ∈ X [−m].
By Yamabe (1953), any locally compact group H has an open
subgroup H ′ and a normal compact subgroup C such that H ′/C is
a Lie group.



Quasi-finite dimension: properties of δ

δ(Y ) ∈ R≥0∞ for nonempty definable Y . If Γ = ∩Yn,
Y1 ⊃ Y2 ⊃ . . ., let δ(Γ) = inf δ(Yn).

I δ({y}) = 0.

I δ(Y ∪ Y ′) = max(δ(Y ), δ(Y ′))

I δ(Y × Y ′) = δ(Y ) + δ(Y ′)

I More generally, if f is a definable function on Y ,

δ(Y ) = inf{α + β : α ∈ R∞, β = dim{z : δ(f −1(z)) ≥ α}

This holds for Y → Y /E even for an
∧

-definable equivalence
relation T .

I Write Ya = f −1(a). Then for any α < β ∈ R,
{a : δ(Ya) ≤ α} ⊂ D ⊂ {a : δ(Ya) < β} for some definable a.



The Larsen-Pink inequality

Proposition

Assume Γ is a Zariski dense subgroup of G , G a simple algebraic
group. Let V be a subvariety of G . δ(V ∩ Γ) ≤ dim(V )

dim(G)δ(Γ).

Proof.
(sketch for dim(V ) = 1, dim(G ) = 2.) We may assume V is
irreducible. Define f : (V ∩ Γ)2 → G , f (y1, h2) = y1y−12 . For
c /∈ Stab(V ), f −1(c) is finite. Hence
δ(Γ) ≥ δ(f (Γ ∩ Y )2) ≥ 2δ(Y ).

Corollary

Let a ∈ Γ, H = CG (a). Then δ(Γ ∩ H) = dim(Y )
dim(G)δ(Γ).

This is obtained using the map ada(x) = x−1ax ; we have
δ(aG ) = δ(G )− δ(H).



Proof of BGT

I X [0] = X ,X [n + 1] = XX [n] (n ∈ N.)

I to show: for any 0 < ε < ε′, for some m, for all X ⊆ G
generating G , |X [m]| ≥ |X |1+ε (unless |X |1+ε′ > |G |.)

I Suppose not. Then by compactness, can find Xn(n ∈ Z) with
XnXn ⊂ Xn+1 and 1 ≤ δ(Xn) ≤ 1 + ε < 1 + ε′ ≤ δ(G ) for all
n; and Xn contained in no definable subgroup of G .

I Let Γ = ∩nXn. This is a Zariski dense subgroup of G ,
0 < δ(Γ) <∞. Renormalize so that δ(Γ) = dim(G ).

I Let R be the set of regular semisimple elements of G . Note:
dim(G r R) < dim(G ), so δ(Γ r R) < δ(Γ).

I Let Υ = {CG (a) : a ∈ R ∩ Γ}. Clearly, Υ is Γ-conjugation
invariant. We will show Υ is definable, i.e. {b : CG (b) ∈ Υ} is
definable, using a dimension gap:



Proof of BGT

I Let T = CG (b), b ∈ R.

I T = CG (a), a ∈ R ∩ Γ, then δ(Γ ∩ T ) ≥ dim(T ) by
Larsen-Pink.

I If δ(T ∩ X ) > dim(T )− 1, then as
δ((T ∩ X )/(T ∩ Γ)) ≤ δ(X/Γ) ≤ δ(X )− δ(Γ) = 0 we have:

I δ(T ∩ Γ) > dim(T )− 1 ≥ dim(T r R) so T ∩ Γ ∩ R 6= ∅.
I Thus T ∈ Υ iff δ(T ∩ X ) > dim(T )− 1 iff
δ(T ∩ X ) ≥ dim(T ); so Υ is definable.

I Hence the normalizer N(Υ) is a definable group, and it
contains Γ. By assumption, N(Υ) = G .

I Fix T ∈ Υ. G/N(T ) embeds into Υ; so
δ(G/N(T )) ≤ δ(Υ) = δ(Γ)− δ(N(T ) ∩ Γ). It follows that
δ(G ) = δ(Γ) = δ(X ); contradicting the assumption on X .



Quasi-finite structures

L a finite language (e.g. graphs).

Theorem (Zilber, CHL; envelopes)

Let M be an infinite structure with |Mk |/Aut(M) = f (k) <∞.
Assume dim(Def (M))→ N (or Ord) is defined, with Morley
dimension properties. Then it is possible to interpret in M a finite
number of infinite dimensional projective geometries over finite
fields, V1, . . . ,Vl . M is a approximated by a family of finite
structures M(d) = M(d, . . . , dl), with dim Vi (M(d)) = di . For any
sentence θ true in M and any K ∈ N, for large enough d,
M(d) |= θ and M(d) ∈ C (L, f |K ).

Example

(Z/4Z)∞.



Quasi-finite structures

C (L, f ) = class of finite L-structures A such that
|Ak/Aut(A)| ≤ f (k). C̄ (L, f )=first order closure.

Example

Classical geometries over finite fields: vector spaces with
unitary/orthogonal/symplectic forms;

Definition
a↓Cb if δ(ab/C ) = d(a/C ) + δ(b/C ).

(Agrees with nonforking definition.)



Proposition (CSFG)

Let M ∈ C̄ (L, f ).

I 3-amalgamation holds over algebraically closed sets.

I Modularity holds: A↓A∩BB for algebraically closed A,B.

I Auxiliary properties: no random bipartite graph; (3 others.)

Theorem (Cherlin-H.)

I Assume (1-3) hold. Then M is coordinatized by classical
geometries over finite fields.

I Theory of envelopes extends to this setting.

I Let f : [1, 4]→ N. There exist finitely many
M1, . . . ,Mν ∈ C̄ (L, f ) with |Mk |/Aut(M) = f (k) (k ≤ 4) and
|Mk |/Aut(M) <∞ in general, whose finite envelopes coincide
with C (L, f ).



Corollary

Within C (L, f ), isomorphism can be decided in polynomial time. If
M is not primitive, an invariant equivalence relation can be found
in polynomial time.


