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Expanding Graphs - Properties

• Combinatorial:  no small cuts, high connectivity

• Probabilistic:  rapid convergence of random walk

• Algebraic:  small second eigenvalue

Theorem. [C,T,AM,A,JS] All properties are 
equivalent!



Expanders - Definition

Undirected, regular (multi)graphs.

Definition:  The 2nd eigenvalue of a d-regular G

Definition:  {Gi} is an expander family if λ(Gi)≤ α<1
Theorem [P] Most 3-regular graphs are expanders.

Challenge:  Explicit (small degree) expanders!

G is [n,d]-graph: n vertices, d-regular
G is [n,d, α]-graph: λ(G)≤ α.

λ(G) ∈ [0,1]

λ(G) = max { || (AG /d) v ||  :  ||v||=1 ,  v ⊥ 1  }   



Applications of Expanders

In CS
• Derandomization

• Circuit Complexity
• Error Correcting Codes

• Data Structures

• …

• Computational Information
• Approximate Counting
• Communication Networks



Applications of Expanders
In Pure Math

• Graph Theory - …

• Group Theory – generating random gp elements [Ba,LP]

• Number Theory – Thin Sets [AIKPS], 

- Sieve method [BGS]

- Dist of integer points on spheres [V]

• Measure Theory – Ruziewicz Problem [D,LPS], 

F-spaces [KR]

• Topology – expanding manifolds [B]

- Baum-Connes Conjecture [G]



Deterministic amplification

Algx→

r
↓

{0,1}
n

random
strings

Thm [Chernoff] r1 r2…. rk independent  (kn random bits) 
Thm [AKS] r1 r2…. rk random path  (n+ O(k) random bits)

Algx→

rk
↓

Algx→

r1
↓

Majority

G [2n,d,1/8]-graph
G explicit! Bx

Pr[error] < 1/3

then Pr[error] = Pr[|{r1 r2…. rk  }∩Bx}| > k/2] < exp(-k)    

|Bx|<2n/3



Algebraic explicit constructions [M,GG,AM,LPS,L,…N,K]

Many such constructions are Cayley graphs.

A a finite group, S a set of generators.

Def. C(A,S) has vertices A and edges (a, as) for all a∈A, s∈S∪S-1.

Theorem. [L] C(A,S) is an expander family.

Proof: “The mother group approach”:

Appeals to a property of SL2(Z) proved by Selberg

A = SL2(p) :  group 2 x 2 matrices of det 1 over Zp.
S = { M1 , M2 }  :  M1  = (   ) , M2  = (    ) 1 1

0 1
1 0
1 1



Algebraic Constructions (cont.)

Very explicit
-- computing neighbourhoods in logspace

Gives optimal results Gn family of [n,d]-graphs
-- Theorem. [AB]                dλ(Gn) ≥ 2√ (d-1)
--Theorem. [LPS,M] Explicit dλ(Gn) ≤ 2√ (d-1) 

(Ramanujan graphs)

Hot off the press:
-- Theorem [KN] SLn(q) is expanding (q fixed!)
-- Theorem [K] Symmetric group Sn is expanding.
-- Theorem [L] All finite simple groups expand.
-- Theorem [H,BG] SL2(p) expands with most generators.



Explicit Constructions  (Combinatorial)
-Zigzag Product [RVW]

G an [n, m, α]-graph.  H an [m, d, β]-graph.

Combinatorial construction of expanders.

H

v-cloud Edges

in clouds

between clouds

v u
u-cloud

(v,k)

Thm. [MR,RVW] G z H is an [nm,d+1,f(α,β)]-graph,                      
and    α<1, β<1 → f(α,β)<1.

Definition.  G z H has vertices {(v,k) : v∈G, k∈H}.

G z H is an expander iff G and H are.



Example

G=B2
m, the Boolean m-dim cube ([2m,m]-graph).

H=Cm , the m-cycle ([m,2]-graph).

m=3

G z H is the cube-connected-cycle ([m2m,3]-graph)



Iterative Construction of Expanders

G an [n,m,α]-graph.  H an [m,d,β] -graph.
A stronger product z’ :

Proof:  Follows simple information theoretic intuition.
The construction:
Start with a constant size H a [d4,d,1/4]-graph.

• G1 = H 2

Theorem. [RVW] Gk is a [d4k, d2, ½]-graph.
Proof: Gk

2 is a [d 4k,d 4, ¼]-graph.
H is a [d 4, d, ¼]-graph.
Gk+1 is a [d 4(k+1), d 2, ½]-graph.

Theorem. [RVW] G z’ H is an [nm,d2,α+β]-graph.

• Gk+1 = Gk
2 z’ H



Consequences of the zigzag product

- Isoperimetric inequalities beating e-value bounds 

[RVW, CRVW]

- Connection with semi-direct product in groups 

[ALW]

- New expanding Cayley graphs for non-simple groups

[MW, RSW]

- SL=L :  How to get out of every maze deterministically

[Reingold ’05]



Semi-direct Product of groups
A, B groups.  B acts on A as automorphisms.

Let ab denote the action of b on a.
Definition.  A × B has elements {(a,b) : a∈A, b∈B}.

group mult (a’,b’) (a,b) = (a’ab , b’b)

Connection: semi-direct product is a special case of zigzag

Assume <T> = B,  <S> = A ,  S = sB (S is a single B-orbit)

Proof: By inspection (a,b)(1,t) = (a,bt) (Step in a cloud)

(a,b)(s,1) = (asb,b) (Step between clouds)

Theorem [ALW] C(A x B, {s}∪T ) = C (A,S ) z C (B,T )

Theorem [ALW] Expansion is not a group property

Theorem [MW,RSW] Iterative construction of Cayley expanders



Beating e-value expansion [WZ, RVW]

In the following a is a large constant.

Task: Construct an [n,d]-graph s.t. every two sets of 
size n/a are connected by an edge.  Minimize d
Ramanujan graphs:  d=Ω(a2)

Random graphs:  d=O(a log a)
Zig-zag graphs:  [RVW] d=O(a(log a)O(1))

Uses zig-zag product on extractors!

Applications
Sorting in rounds, Superconcentrators,…



Lossless expanders [CRVW]

Task:  Construct an [n,d]-graph in which every set of 
size at most n/a expands by a factor c.  Maximize c.
Upper bound:  c≤d
Ramanujan graphs: [K] c ≤ d/2
Random graphs: c ≥ (1-ε)d                  Lossless
Zig-zag graphs: [CRVW] c ≥ (1-ε)d     Lossless
Use zig-zag product on conductors!!
Extends to unbalanced bipartite graphs.

Applications (where the factor of 2 matters):
Data structures, Network routing, Error-correcting codes



Error Correcting Codes  [Shannon, Hamming]
C: {0,1}k → {0,1}n C=Im(C) 

Rate (C) = k/n    Dist (C) = min d(C(x),C(y))

C good if Rate (C) = Ω(1), Dist (C) = Ω(n)

Find good, explicit, efficient codes.
Graph-based codes [G,M,T,SS,S,LMSS,…]

z∈C  iff  Pz=0 C is a linear code
Trivial Rate (C) ≥ k/n , Encoding time = O(n2)
G lossless → Dist (C) = Ω(n), Decoding time = O(n)

n

n-k

1          1          0         1          0         0          1         1      z

0         0         0         0         0         0 Pz
+       +        +        +        +       +



Decoding 
Thm [CRVW] Can explicitly construct graphs:

k=n/2,  bottom deg = 10,  ∀B⊆[n],  |B|≤ n/200,  |Γ(B)| ≥ 9|B| 

B = set of corrupted positions     |B| ≤ n/200

B’ = set of corrupted positions after flip

Decoding alg [SS]: while Pw≠0 flip all wi with i in

FLIP = { i : Γ(i)  has more 1’s than 0’s }

Claim [SS] :   |B’| ≤ |B|/2

Proof: |B \ FLIP | ≤ |B|/4,   |FLIP \ B | ≤ |B|/4

n

n-k
0         0         1         0         1         1        Pw
+       +        +       +        +       +

1          1          1         0         1 0        1           1      w



Escaping mazes deterministically, or
Graph connectivity in logspace [R’05]

Theseus

Ariadne

Crete, ~1000 BC



Expander from any connected graph [R]

G an [n,m,α]-graph.  

H an [m,d,β] -graph.

The construction:

Theorem. [RVW] Gk is a [d4k, d2, ½]-graph

A stronger product z’ :

Fix a constant size H a [d4,d,1/4]-graph.

• G1 = H 2

Proof: Gk
2 is a [d 4k,d 4, ¼]-graph.

H is a [d 4, d, ¼]-graph.
Gk+1 is a [d 4(k+1), d 2, ½]-graph.

Theorem. G z’ H is an [nm,d2,α+β]-graph.

• Gk+1 = Gk
2 z’ H

G an [n,m, 1-ε]-graph.  

H an [m,d,1/4] -graph.

[nm,d2, 1-ε/2]-graph.

H a [d10,d,1/4]-graph.

• G1 = G

• Gk+1 = Gk
5 z’ H

Gclog n is [nO(1), d2, ½]

Thm[R] G1 is [n, d2, 1/n3]



Undirected connectivity in Logspace [R05]

Algorithm

-Input G=G1 an [n,d2]-graph 

- Compute Gclog n

-Try all paths of length clog n from vertex 1.

Correctness

- Gi+1 is connected iff Gi is

- If G is connected than it is an [n,d2, 1-1/n3 ]-graph

- G1 connected Gclog n has diameter < clog n

-Space bound

- Gi+1  from Gi requires constant space (squaring and zigzag are local)

- Gclog n from G1  requires O(log n) space



Distributed routing [Sh,PY,Up,ALM,…]

n inputs, n outputs, many disjoint paths
Permutation,Non-blocking networks,… G

G 2-matching    Butterfly
every path, bottlenecks

G expander   multi-Butterfly
many paths, global routing

G lossless expander  multi-Butterfly
many paths, local routing

Key: Greedy local alg in G 
finds perfect matching

bit
reversal



Open Questions

♦ Better understand and relate pseudo-random objects 
- expanders

- extractors

- hash functions

- samplers 

- error correcting codes

- Ramsey graphs

♦Explicit undirected, const degree, lossless expanders

♦Explicit dimension expanders

♦Better understand expansion in groups
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