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When the topological method of surgery and

gluing fails, we have to find a method that

does not depend on the detailed topological

information of the manifold. The best exam-

ple is the proof of the Severi conjecture and

the Poincarè conjecture and the geometriza-

tion conjecture.
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The beauty of the method of nonlinear differ-

ent equation is that we can keep on deform-

ing some unknown structure until we can rec-

ognize them eventually. The control on this

process of deformation depends on careful

a priori estimate of the nonlinear equation.

However, if the structure is to be changed in

a large scale, standard energy estimate usu-

ally cannot be used as the underliving Sobolov

inequality depends on the geometric struc-

ture and need not hold in general. Hence

maximum principle is used in most cases.
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A fruitful idea to construct geometric struc-

ture is to construct metrics that satisfy the

Einstein equation. We demand that the Ricci

tensor of the metric be proportional to the

metric itself. This can be considered as a

generalization of the Poincarè metric to higher

dimensions. This is an elliptic system, if we

identify metrics up to diffeomorphisms. The

problem of existence of an Einstein metric is

really a very difficult but central problem in

geometry.
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One can obtain such metrics by a variational

principle: After normalization of the metrics

by setting their volume equal to one, we min-

imize the total scalar curvature in each fixed

conformal class; then we vary the confor-

mal class and maximize the (constant) scalar

curvature. The first part is called the Yam-

abe problem and was settled by the works of

Trudinger-Aubin-Schoen.
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The most subtle part was the case when the

manifold is conformally flat, where Schoen

made use of the positive mass conjecture to

control the Green’s function of the confor-

mally invariant operator and hence settle this

famous analytic problem. The relation of this

problem with general relativity is a pleasant

surprise and should be considered as an im-

portant development in geometric analysis.

The second part of maximization among all

conformal structure is much more difficult.

Schoen and his students, and also M. An-

derson have made contributions towards this

approach.
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Let me now discuss the other two major gen-

eral approaches to constructing Einstein-metrics.

The first one is to solve the equation on a

space with certain internal symmetries. For

such manifolds, the ability to choose a spe-

cial gauge, such as holomorphic coordinates

is very helpful. The space with internal sym-

metry can be a Kähler manifold or a manifold

with special holonomy group.
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A very important example is given by the Cal-

abi conjecture, where one asked whether the

necessary condition for the first Chern class

to have definite sign is also sufficient for the

existence of Kähler-Einstein metric.
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Algebraic varieties are classified according to

the map of the manifold into the complex

projective space by powers of the canonical

line bundle. If the map is an immersion at

generic point, the manifold is called an alge-

braic manifold of general type. This class of

manifolds comprises the majority of algebraic

manifolds, and these manifolds can be con-

sidered as generalizations of algebraic curves

of higher genus.
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In general, the above canonical map may have

a ”base point” and hence be singular. How-

ever, the minimal model theory of the Ital-

ian and Japanese school (Castelnuovo, Fano,

Enriques, Severi, Bombieri, Kodaira, Mori,

Kawamata, Miyaoka, Inoue) showed that an

algebraic manifold of general type can be

contracted to a certain minimal model, where

the canonical map has no base point. In

this case, the first Chern class of the min-

imal model is non-positive and negative in a

Zariski open set.

10



Most algebraic manifolds of general type have

negative first Chern class. In this case, Aubin

and I independently proved the existence and

uniqueness of a Kähler-Einstein metric.

For the general case of minimal models of

manifolds of general type, the first Chern

class is not negative everywhere. Hence it

does not admit a regular Kähler-Einstein met-

ric.
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However, it admits a canonical Kähler-Einstein

metric which may have singularities. This

statement was observed by me right after

I wrote my paper on the Calabi conjecture,

where I also discussed the regularity of degen-

erate Kähler-Einstein metrics. (Tsuji later

reproved this theorem in 1985 using Hamil-

ton’s Ricci flow.)
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The singularity of this canonical Kähler-Einstein

metric that I constructed on manifolds of

general type is not so easy to handle. By

making some assumption on the divisors, Cheng-

Yau and later Tian-Yau contributed to under-

standing of the structure of these metrics.

These metrics give important algebraic geo-

metric informations of the manifolds.
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In 1976, I observed that the Kähler-Einstein

metric can be used to settle important ques-

tions in algebraic geometry. An important

contribution is the algebraic-geometric char-

acterization of Shimura varieties: quotients

of Hermitian symmetric domains by discrete

groups. They are characterized by the state-

ment that certain natural bundle, constructed

from tensor product of tangent bundles, has

nontrivial holomorphic section.
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The other important assertions are the in-

equalities between Chern numbers for alge-

braic manifolds. For an algebraic surface, I

proved 3C2(M) ≥ C2
1(M), an inequality which

was independently proved by Miyaoka by al-

gebraic means. I proved further that equal-

ity holds only if M has constant holomorphic

sectional curvature.
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It is the last assertion that enabled me to

prove that there is only one complex struc-

ture on the complex projective plane. This

statement was a famous conjecture of Severi.

The construction of Ricci flat Kähler metric

has been used extensively in both algebraic

geometry and string theory, such as Torelli

theorem for K3 surfaces and deformation of

complex structure.
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The construction of Kähler-Einstein metric

with positive scalar curvature has been a very

active field. In early eighties, I proposed its

existence in relation to stability of the mani-

folds.

In the hands of Donaldson, and others, we

see that my proposal is close to be realized.

It gives new informations about the algebraic

geometric stability of manifolds.
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In general, there should be an interesting pro-

gram to study Kähler-Einstein metrics on the

moduli space of either complex structures or

stable bundles. It should provide some in-

formations for the moduli space. For exam-

ple, recently, using this metric, Liu-Sun-Yau

proved the Mumford stability of the logarith-

mic cotangent bundle of the moduli spaces

of Riemann surfaces.

Hence we see that by constructing new geo-

metric structure through nonlinear partial dif-

ferential equation, one can solve problems in

algebraic geometry that are a priori indepen-

dent of this new geometric structure.
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A holomorphic coordinate system is a very

nice gauge and a Kähler metric is a beautiful

metric as it depends only on one function.

When we come to the space of Riemannian

metrics, we need to understand a large sys-

tem of nonlinear equations invariant under

the group of diffeomorphism. The choice of

gauge causes difficulty.
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The Severi conjecture can be considered as

a complex analog of the Poincarè conjec-

ture. The fact that Einstein metrics were

useful in setting the Severi conjecture indi-

cates that these metrics should also be useful

for the geometrization conjecture and hence

the Poincarè conjecture. This was what we

believed in the late seventies.
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Many methods motivated by the calculus of

variation were proposed. The most promis-

ing method was due to Hamilton who pro-

posed to deform any metric along the nega-

tive of its Ricci curvature. The development

of the Ricci flow has gone through several

important stages of development.
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The first decisive one was Hamilton’s demon-

stration of the global convergence of the Ricci

flow (1982) when the initial metric has pos-

itive Ricci curvature. This is a fundamental

contribution that give confidence on the im-

portance of the equation.
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To move further, it was immediately clear

that one needs to control the singularities of

the flow. This was studied extensively by

Hamilton. The necessary a priori estimate

was based on Hamilton’s spectacular gener-

alization of the works of Li-Yau (1984).
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Li-Yau introduced a distance function on space-

time to control the precise behavior of the

parabolic system near the singularity. The

concept appears naturally from the point of

view of a priori estimate. For example, if the

equation is

∂u

∂t
= △u − V u.

The distance introduced by Li-Yau is given

by

d((x, t1), (y, t2))

= inf
r

{

1

4(t2 − t1)

∫ 1

0
| ṙ |2

+(t2 − t1)
∫ 1

0
V

(

r(s), (1 − s)t2 + st1

)

}

.

The kernel of the parabolic equation can then

be estimated by this distance function.
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The potential V is naturally replaced by the

scalar curvature in the case of Ricci flow as

it appears in the action of gravity. This is

what Perelman did later. The idea of Li-

Yau-Hamilton come from the careful study of

maximum principle. The basic philosophy of

LYH is to study the extreme situation. In the

case of Ricci flow, one looks at the soliton

solution and verify some equality holds along

the soliton and such equality can be turned

to be estimates for general solutions of the

parabolic system, via maximum principle.
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In the nineties, Hamilton was able to classify

singularities of the Ricci flow in three dimen-

sion and prove the geometrization conjec-

ture if the curvature of the flow is uniformly

bounded. These are very deep works both

from the point of view of geometry and anal-

ysis. Many ideas in geometric analysis were

used. This includes the proof of the positive

mass conjecture, the injectivity radius esti-

mate and an improved version of the Mostow

rigidity theorem. In particular, he introduced

the concept of Ricci flow with surgery.
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In his classification of singularities, Hamilton

could not determine the existence or nonex-

istence of one type of singularity which he

called cigar. This type of singularity was

proved to be non-existent by Perelman in

2002 in an elegant manner. Perelman then

extended the work of Hamilton on flows with

surgery. Among many creative ideas, he found

a priori estimates for the gradient of the scalar

curvature, the concept of reduced volume

and a new way to perform surgery with con-

trol.
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The accumulated works of Hamilton-Perelman

are spectacular. Today, 5 years after the

first preprint of Perelman was available, sev-

eral groups of mathematicians have put for-

ward their manuscripts explaining their un-

derstandings on how Hamilton-Perelman’s ideas

can be put together to prove the Poincare

conjecture; at the same time, other experts

are still working diligently on the proof of this

century old conjecture.
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Besides the Poincarè conjecture, Ricci flow

has many other applications: A very impor-

tant one is the contribution due to Chau,

Chen, Ni, Tam and Zhu, towards the proof

of the conjecture that every complete non-

compact Kähler manifold with positive bisec-

tional curvature is bi-holomorphic to Cn. (I

made this conjecture in 1972 as a generaliza-

tion to higher dimension of the uniformiza-

tion theorem. Proceeding to the conjecture,

there were important works of Greene-Wu

to proving Steiness of the complete noncom-

pact Kähler manifold with positive sectional

curvature.)
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More recently, several old problems were solved

by using the classical results of Hamilton that

were published in 1983, 1986 and 1997.

The most outstanding one is the recent re-

sult of Brendle-Schoen; they proved that man-

ifolds with pointwise quarter-pinching curva-

ture are diffeomorphic to manifolds with con-

stant positive curvature.

This question has puzzled mathematicians

for more than half a century.
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It has been studied by many experts in dif-

ferential geometry.

Back in 1950s, Rauch was the first one who

introduce the concept of pinching condition.

Berger and Klingenberg proved such a man-

ifold to be homeomorphic to a sphere when

it is simply connected.

The diffeomorphic type of the manifolds is

far more difficult to understand. For exam-

ple, Gromoll’s thesis achieved a partial result

toward settling such a result: he assumed a

much stronger pinching condition.
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The result of Brendle-Schoen achieved op-

timal pinching condition. More remarkably,

they only need pointwise pinching condition

and do not have to assume simply-connectivity.

Both of these conditions are not accessible by

the older methods of comparison theorems.

This result partially builds on fundamental

work by Böhm and Wilking who proved that

a manifold with positive curvature operator

is diffeomorphic to a spherical space form.

Therefore, the program on Ricci flow laid

down by Hamilton in 1983 has opened a new

era for geometric analysts to build geometric

structures.
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Other obvious problems are to construct ge-

ometric structure on other low dimensional

manifolds, especially four-dimensional mani-

folds. Besides the fundamental works based



The Atiyah-Singer index formula gives very

important obstructions for the existence of

integrable complex structures on surfaces, as

was found by Kodaira. The moduli spaces of

holomorphic vector bundles have been a ma-

jor source for Donaldson to provide invariants

for smooth structures. On the other hand,

the existence of pseudoholomorphic curves

based on Seiberg-Witten invariant constructed

by Taubes is a powerful tool for symplectic

topology. It seems natural that one should

build geometric structures over a smooth man-

ifold that include all these types of informa-

tion.
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The integrability condition derived from Atiyah-

Singer formula for almost complex structures

in dimC ≥ 3 is not powerful enough to rule

out the following conjecture:

For dimC ≥ 3, every almost complex manifold

admits an integrable complex structure.
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If this conjecture is true, we need to build ge-

ometry over such nonKähler complex mani-

folds. This is especially interesting in higher

dimension. It is possible to deform an al-

gebraic manifold to another one with differ-

ent topology by tunneling through nonKähler

structures. A good example is related to the

Clemens-Friedman construction that one can

collapse rational curves in a Calabi-Yau three

manifold to conifold singularity. Then by

smoothing the singularity, one obtains non-

singular nonKähler manifold. Reversing the

procedure, one may get another Calabi-Yau

manifold.
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Reid proposed that this procedure may con-

nect all Calabi-Yau manifolds in three dimen-

sion. There is perhaps no reason to restrict

ourselves only to Calabi-Yau manifolds, but

to more general algebraic manifolds on a fixed

topological manifold, is there other general

construction to deform one algebraic struc-

ture from one component of the moduli space

of a complex structure to other component

through nonKähler complex structures?
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Non-Kähler complex structures are difficult

to handle geometrically. However, there is

an interesting concept of Hermitian structure

that can be useful. This is the class of bal-

anced structure.

An Hermitian metric ω is called balanced iff

d(ωn−1) = 0.

It was first studied by M. Michelsohn and

Alessandrini-Bassanelli, who observed that twistor

space admits a balanced metric and that ex-

istence of balanced metric is invariant under

birational transformation. Recently, it came

up in the theory of Heterotic string, based on

a warped product compactification.
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Strominger suggests that there should be a

holomorphic vector bundle that should admit

a Hermitian Yang-Mills connection and that

there should be Hermitian metric that is con-

formally balanced. To be more precise, there

should be a holomorphic 3−form Ω so that

d(‖ Ω ‖ω ω2) = 0,

where ω is the Hermitian form. An impor-

tant link between the bundle and the metric

is that connections on both structures give

trivial first Chern form and the difference be-

tween their second Chern forms can be writ-

ten as
√
−1∂∂̄ω.
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This geometric structure constructed for Het-

erotic string theory is based on construction

of parallel spinors and the anomaly equation

required by quantization of string theory.
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On the other hand, general existence the-

orem for the Strominger system is still not

known.

An interesting mathematical question is to

construct a balanced complex three mani-

fold with a nonvanishing holomorphic 3-form.

Then we like to construct a stable holomor-

phic vector bundle that satisfies all of the

above equations of Strominger.
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Jun Li and I proved the existence of Stro-

minger system by perturbing around the Calabi-

Yau metric.

The first example on a nonKähler manifold

is due to Fu-Yau. It is obtained by forming

a torus fiber bundle over K3 surface (due to

Dasgupta-Rajesh-Sethi, Becker-Becker-Dasgupta-

Green and Goldstein-Prokushkin).
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The construction of Strominger system over

this manifold can be achieved if we can solve

the following complex Monge-Ampere equa-

tion:

∆(eu − α′

2
fe−u) + 4α′detuīj

det gīj

+ µ = 0,

where f and µ are given functions on K3 sur-

face S so that f ≥ 0 and
∫

S µ = 0. This was

achieved by Fu-Yau based on a priori esti-

mates of u, which is more complicated than

those used in Calabi conjecture.
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There are nontrivial interpretation of the Fu-

Yau example through conformal field theory.

The supersymmetric heterotic string gives an

SU(3) Hermitian connection on the tangent

bundle. But the connection has torsion (which

is trace free).
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If we are interested in G-structure on the tan-

gent bundle with G ⊆ U(n), it can be accom-

plished by considering the work of Donaldson-

Uhlenbeck-Yau on stable holomorphic bun-

dles over Kähler manifold. The work gen-

eralizes the work of Narasimhan-Seshadri for

algebraic curves.

It was extended to nonKähler manifolds by

Li-Yau where the base complex manifold ad-

mit a Gauduchon metric ω with

∂∂̄(ωn−1) = 0.
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If the tangent bundle T is stable and if some

irreducible subbundles constructed from ten-

sor product of T admits nontrivial holomor-

phic section, the structure group can be re-

duced. The major question is how to control

the torsion of this connection by choosing ω

suitably.
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In the other direction, one should mention

that Smith-Thomas-Yau succeeded to con-

struct symplectic manifold mirror to the Clemens-

Friedman construction. While the Clemens-

Friedman construction leads to nonKähler com-

plex structures over connected sums S3×S3,

the Smith-Thomas-Yau construction lead to

symplectic non-complex structure over con-

nected sums of CP3 (which may not admit

any integrable complex structure).
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We expect a mirror structure for the Stro-

minger system in symplectic geometry, where

we hope to build an almost complex structure

compatible to the symplectic form. They

should satisfy a good system of equations.

We expect that special Lagrangian cycles and

pseudoholomorphic curves will play roles in

such a new structure which is dual to the

above system of equations of Strominger.

48



The inspirations from string theory has given

amazingly deep insight into the structure of

Calabi-Yau manifolds which are manifolds with

holonomy group SU(n).
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Constructions of geometric structures by cou-

pling metrics with vector bundles and sub-

manifolds should give a new direction in ge-

ometry, as they may exhibit supersymmetry.

An important idea provided by string theory

is that duality exists between supersymmetric

manifolds. Duality allows us to compute dif-

ficult geometric information by perturbation

methods on the dual objects.
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General relativity and string theory have in-

spired a great deal of geometric ideas and it

has been very fruitful. Nature also tells us ev-

erything vibrates and there should be intrinsic

frequency associated to our geometric struc-

ture. In the classical geometry, we have an

elliptic operator associated to deformation of

the structure. For space of Einstein metrics,

it is called the Lichnerowicz operator. It will

be interesting to study the spectrum of this

operator.

Quantum gravity may provide a deeper con-

cept. A successful construction of quantum

geometry will change our scope of geometric

structures.
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Einstein (Herbert Spencer lecture at Oxford

in 1933):

Pure logical thinking cannot yield us any knowl-

edge of the empirical world. All knowledge

of reality starts from experience and ends in

it. Propositions arrived at by purely logical

means are completely empty as regards real-

ity.
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