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The concept of geometric structure has been

enriched continuously. It has been found that

metrics with special holonomy group may not

be enough to describe the structure. In or-

der to explain this, I will motivate the idea

through the concept of duality in string the-

ory. Let us start with some classical exam-

ples.
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The theory of Lie groups and their discrete

subgroups gives rise to Cartan’s theory of

locally symmetric and homogeneous spaces.

They provide examples with rich properties

for geometers and analysts. many impor-

tant properties of these spaces were obtained

when we consider them to be moduli space

of other geometric objects.
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For example, the Siegel upper space can be

considered as moduli space of abelian vari-

eties. Occasionally, moduli space of some

algebraic manifolds can be locally Hermitian

symmetric: Such manifolds include K3-surfaces,

Calabi-Yau manifolds obtained by taking branched

cover over CP3 along eight hyperplanes or

cubic surfaces. Many hyperKähler manifolds

such as symmetric products of K3 surfaces

can be considered as moduli space of semi-

stable vector bundles over hyperKähler man-

ifolds.
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On the other hand, to understand geometric

structures, it is important to understand non-

linear transformations between these spaces

that are of geometric importance. For exam-

ple, if H and K are two closed subgroup in

a Lie group G, one can construct a natural

map from sheaves or cohomology classes of

the space G/H to the space G/K by pulling

back the objects from G/H to G/(H ∩ K).

After twisting by some universal object on

G/(H ∩K), one can push the product to ob-

jects on G/K:

´
´

´
´́+

Q
Q

Q
QQs

G/(H ∩K)

G/H G/K
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As was observed by Chern, the classical Kine-

matic Formulae of Poincaré, Santalo and Blaschke

can be formulated in terms of the above trans-

formation by taking G to be the group of

motions on the homogeneous space where

incidence relations of submanifolds are con-

sidered.
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This kind of transformations also appeared

in many places. A very important one is the

case of four dimensional manifold M and we

consider the moduli space M of rank two

bundles over M whose curvature is self-dual.

On the product space M×M, there is a rank

two universal bundle V and we can use the

second Chern class of V to transform sec-

ond cohomology of M to M and obtain the

Donaldson polynomials.
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Another important case is the T -duality that

has played an important role in number the-

ory and algebraic geometry.

Let Tn = Rn/Zn be a torus and (Tn)∗ =

Rn/(Zn)∗ be the dual torus, which can be

considered as the moduli space of complex

flat line bundles over Tn. Then we have the

following diagram

?

´
´

´́+

Q
Q

QQs

L

Tn × (Tn)∗

Tn (Tn)∗
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There is a universal complex line bundle L

over Tn×(Tn)∗ so that L restricted to Tn×{q}
is isomorphic to q. We can pull back coho-

mology classes from Tn to Tn × (Tn)∗ where

we multiply the class by exp(c1(L)). Then we

can push the product class to (Tn)∗. Such a

transform can be considered as a nonlinear

transform between the torus Tn and its dual

(Tn)∗. It is called T−duality in the recent

developments in string theory.

Note that when n = 1, this is the duality

between circle of radius r to circle of radius

1
r .
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Strominger-Yau-Zaslow (1995) found that a

certain algebraic manifold M (Calabi-Yau) ad-

mits a T3 fiber structure over S3 where generic

fibers are T3. By replacing T3 by (T3)∗, we

obtain another algebraic manifold M∗ which

is also Calabi-Yau.
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By performing a family version of the above

T−duality and a Legendre transformation on

some affine structures on the base, one ob-

tains a transform that maps one geometric

structure over the algebraic manifold M to

another geometric structure over M∗. (The

affine structure on the base space is the one

described previously where we have a poten-

tial for the metric and the Legendre trans-

form acts on those potentials.)
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Note M and M∗ may be topologically dis-

tinct. This transformation has many impor-

tant properties. For example, holomorphic

bundles V over M are supposed to be mapped

to special Lagrangian cycles C in M∗.

In terms of cohomology, the class Ch(V )
√

Tod(M)

in H0(M)⊕H2(M)⊕H4(M)⊕H6(M) is mapped

to cohomology class of [C] in H3(M∗). The

fact that the algebraic bundles of M are mapped

to H3(M∗) raise the following question:
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If M and M∗ are defined over some number

field, will the Frobenius action on the Étale

cohomology of H3(M) be mapped to certain

action on the K groups defined by algebraic

vector bundles? Will the Adams operation

play a role?
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SYZ argued that the above nonlinear trans-

form is the same as the mysterious mirror

symmetry that was initiated by Greene-Plesser,

Candelas-de la Ossa-Green-Parkes based on

speculations of conformal field theory.

Both the analytic and algebraic properties of

the mirror transform are spectacular. How-

ever, they are not yet well-understood.
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On the other hand, it has already produced a

powerful method in geometry. For example,

it allows algebraic geometers to calculate the

number of algebraic curves in a Calabi-Yau

manifold. This was a major classical prob-

lem in algebraic geometry. It was solved by

Candelas et. al., in that they found the right

formula. The rigorous mathematical proof

came from the works of Liu-Lian-Yau and

Givental.
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In principle, we can extend the above T -duality

to a more general situation. For example, Tn

can be replaced by a K3-surface or other al-

gebraic manifold and (Tn)∗ can be replaced

by the moduli space of semi-stable holomor-

phic bundles over that manifold. In this case,

L can be replaced by the universal bundle.

Gukov-Yau-Zaslow observed that certain man-

ifolds with holonomy group G2 have a fiber

structure with fiber given by K3 surfaces and

they are dual to algebraic manifolds which are

Calabi-Yau.
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The arguments of SYZ and GYZ are based

on brane theory, a quantized version of string

theory. The belief that the transformation

should work well for fibrations with singular-

ities comes from intuition that arose from

physics. Mirror symmetry gives rise to many

conjectures in geometry which were proved

later by rigorous mathematics. The mathe-

matical proof in turn justifies the intuition of

the physicists.
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Let us now examine how submanifolds can

help the construction of geometric structures.

It has been an open problem in geometry to

construct an explicit metric on a K3-surface

with holonomy group SU(2). Greene, Shapere,

Vafa, and I found an explicit metric (with

SU(2) holonomy) on the K3-surface fibered

over the two sphere with torus fiber. All the

fibers have flat metric.
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However, our metric is singular along the sin-

gular fiber. It is believed that one can perturb

this singular metric to be a smooth one with

SU(2) holonomy. The perturbation series is

believed to be expressible in terms of areas

of holomorphic disks with boundary specified

to be a subset of the fiber torus. The moti-

vation comes from the interpretation of our

metric as a semi-classical approximation to

the quantum theory based on the K3 sur-

face. The holomorphic disks are instanton

corrections.

There is a similar picture for three-dimensional

Calabi-Yau manifolds.

19



In the process of performing the mirror trans-

form, the metric and the complex structure

is perturbed by quantities that come from

holomorphic cycles or bundles. Hence, it is

reasonable to believe that a good geometric

structure should include a metric with a cer-

tain holonomy group, a space of bundles that

have special holonomy group, and a space of

cycles such as holomorphic cycles or special

Lagrangian cycles. (The Lagrangian that ap-

peared in low energy string theory includes all

these quantities and some scalar functions.)
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Philosophically, we know that certain sub-

space of functions can determine the space

where they are defined. In fact, algebraic ge-

ometers use the rings of algebraic functions

to determine the algebraic structure of the

manifold. Analytically, we can use solutions

of differential equations constructed from the

metric to determine the geometric structure.
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Obvious functions are harmonic functions, eigen-

functions, eigenforms or spinors. But there

are many naturally defined nonlinear differ-

ential operators such as the Monge-Amperè

operator. Solutions of these nonlinear oper-

ators can be directly related to the construc-

tion of the metric.
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The moduli space of self-dual Yang-Mills bun-

dles or Seiberg-Witten equations have been

used by Donaldson et. al. to detect the

topological structure of the manifold. One

expects that more refined properties of geo-

metric structures can be determined by spe-

cial bundles or special cycles.
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Intuitions from physics have been very useful.

In fact, an ultimate goal of geometry is to

find a geometric structure that can describe

quantum physics when distance is small and

general relativity when distance is large. For

such a picture, the classical view of spacetime

is expected to be changed drastically.
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Classical relativity has been verified success-

fully. The large scale structure of spacetime

is therefore in reasonable good shape. How-

ever, curvature (or gravity) can drive space-

time to form singularities, which may have

to be understood and resolved by quantum

physics. The famous conjecture of Penrose

says that generic singularity in classical rela-

tivity has to be of black hole type.
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Singularities are places where physical laws

do not hold. What it means is that classical

concept of spacetime is not adequate to de-

scribe physics at small scale. For small scale

structure of spacetime, quantum field theory

has to be brought in and it is likely that all

the quantities such as bundles and cycles will

contribute.
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Let me now discuss the approach from the

point of view of geometric analysis to con-

struct geometric structures. Two major ways

had been developed: one is by gluing struc-

tures together and the other one is by calcu-

lus of variation or deformation by parabolic

equations.
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Given a smooth manifold, how does one con-

struct geometric structures over such a man-

ifold? Ideally we would like to find necessary

and sufficient conditions in terms of algebraic

topological data such as homology classes,

homotopy groups and characteristic classes

of the manifold.
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This is indeed possible for questions such as

the existence of almost complex structure by

studying the classifying map of the manifold

into the classifying space BU(n). The ques-

tion is reduced to study the lifting of the map

to B(SO(2n)) which classifies the tangent

bundle to a map into BU(n). It is a homo-

topic question and is completely understood

when n ≤ 4.

-
?¡

¡
¡

¡
¡

¡
¡

¡
¡µ
BU(n)

M BSO(2n)
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In principle, we can replace U(n) by other

Lie subgroups of the orthogonal group in the

above discussion.

It would be useful to find a necessary and

sufficient condition for the existence of G2-

structure on a seven dimensional manifold

where the associated three form is closed.
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The question of existence of geometric struc-

tures is very much related to uniqueness. One

can of course relax uniqueness to finite di-

mensionality of the geometric structures. Only

in such cases, techniques of elliptic or parabolic

theory of differential equations can be useful.

Fortunately, most of the geometric structures

have this finite dimensionality property.
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However, it should be pointed out that there

can be infinitely many distinct components

of complex structures on a fixed compact

manifold. It will be useful to classify all the

possible Chern classes of such complex struc-

tures. Similarly, there may be infinite number

of components of symplectic structures on a

given compact manifold, all of whose sym-

plectic forms belong to the same cohomology

class.
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The most direct way to construct geometric

structures is to perform surgery on manifolds:

replacing one handlebody by another handle-

body. In the process, one needs to make sure

that the new handlebody has compatible ge-

ometric structure and the gluing is smooth.

The detail of the geometric structure on a

manifold with boundary is thus important.
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A beautiful example is Thurston’s approach

to constructing hyperbolic metrics on atoroidal

irreducible three-manifolds. Thurston found

an important generalization of the rigidity

theorem of Mostow on hyperbolic manifolds

to three-manifolds with geodesic boundary.

The hyperbolic structure is determined by its

fundamental group and the conformal struc-

ture on the boundary. The possibility of glu-

ing two such manifolds is obtained by a fixed

point formula on the Teichmüller space.
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Another example is given by the work of Schoen-

Yau and Gromov-Lawson on the classifica-

tion of manifolds with positive scalar curva-

ture. They prove that surgery on embedded

spheres with codimension ≥ 3 preserves the

existence of metrics with positive scalar cur-

vature.
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Construction of geometric structures on a

manifold by surgery can be powerful, as many

tools of algebraic topology can be brought

in. However, the gluing procedure usually in-

volves some question of convexity. For ex-

ample, a ball is convex for most geometric

structures, and in order to glue it to another

manifold along the boundary, the boundary

of the other manifold has to be concave in

a suitable manner. However, in conformal

geometry, inversion turns the ball inside out.

Therefore, one can prove that the connected

sum of conformally flat manifolds is still con-

formally flat.
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It is much more difficult to glue complex man-

ifolds along a complex submanifold unless the

normal bundle of the submanifold is trivial.

Even in such cases, it remains to find ob-

structions to constructing an integrable com-

plex structure on the connected sum of two

complex manifolds along the complex sub-

manifold. (If the normal bundle of the com-

plex submanifold is negative, one can perform

a contraction and a suitable surgery can be

carried out.)
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The idea of combining methods from geo-

metric analysis and gluing a geometric struc-

ture to a given manifold was initiated by the

pioneering work of Taubes. He was the first

one to construct anti-self dual bundles on

four manifolds by gluing the instantons from

four spheres to a given four dimensional man-

ifold. This eventually leads to the Donaldson

theory, which is the major tool in four mani-

fold theory.
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In 1992, Taubes was able to perform similar

procedure to construct anti-self dual metrics

on any four dimensional manifold as long as

we glue in enough copies of CP2. The twistor

space of these manifolds are complex three

dimensional manifold fibered over the four

manifold with S2 fibers.
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Similar technique was later used by Joyce in

1996 to construct seven dimensional mani-

folds with holonomy group equal to G2 and

eight dimensional manifolds with holonomy

group equal to Spin(7).

The works are all based on singular pertur-

bation method and are very powerful.
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Unfortunately the perturbation method is not

powerful enough to provide the information

of the full moduli space of the correspond-

ing structures. And this is the most basic

question in order to apply G2 manifolds to

M-theory.
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Existence and moduli space of affine, pro-

jective flat and conformally fiat structure in

higher dimension is much more difficult than

two dimension, for example, it is not known

which three manifolds admit affine structures.

A well-known question whether compact affine

manifolds have zero Euler number is not solved.

It is known to be true if the connection is

complete.
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Many of the questions are related to devel-

oping map from the universal cover of the

manifold to Rn, RPn or Sn. In general, the

map need not be injective. If the map is

injective, the manifold with such geometric

structure will be equivalent to study of dis-

crete group acting on a domain. Only in one

case, we know the developing map is injec-

tive. Schoen-Yau proved in 1986, that any

conformal map from a complete conformal

flat manifold with positive scalar curvature

into Sn is injective.
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This property is false without assuming pos-

itivity of scalar curvature. Conformally flat

manifolds with positive scalar curvature are

then quotients of domains in Sn by a dis-

crete group of Mobius transformations. The

domain is dense in Sn with large codimension.
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When symmetry is imposed, we have much

better understanding of the spacetime. In

the past twenty years, the most fruitful re-

sults have been found for spacetime with su-

persymmetries. The concept of supersym-

metry may not be acceptable to some physi-

cists, but it does provide a beautiful and el-

egant playing ground for geometers. Many

classical questions in geometry were resolved

by supersymmetric considerations.
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A good example is the Seiberg-Witten the-

ory which was motivated by supersymmetric

Yang-Mills theory.

The invariant created by Seiberg-Witten the-

ory has been very powerful for the study of

four manifolds: especially for those four di-

mensional symplectic four manifolds.
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In the later case, Taubes proved the deep

theorem that creates existence of pseudo-

holomorphic curves based on the topologi-

cal data of Seiberg-Witten invariants. As a

corollary, he proved that there is only one

symplectic structure on CP2.

A.K. Liu was also able to classify all four di-

mensional symplectic manifolds that support

a metric with positive scalar curvature.
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