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The subject of geometric analysis evolves ac-

cording to our understanding of geometry

and analysis. However, one should say that

ideas of algebraic geometry and representa-

tion theory have been extremely powerful in

both global and local geometry.
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In fact, the spectacular idea of using geom-

etry to understand Diophantine problem has

already widened our concept of space. The

desire to find suitable geometry to accom-

modate unified field theory in physics would

certainly drastically change the scope of ge-

ometry in the near future.
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In the following lectures, we shall focus on an

important branch of geometric analysis: the

construction of geometric structures over a

given topological space.

There are many kinds of geometric struc-

tures; most of them can be classified through

the theory of groups and their representa-

tions. Some of their structures are motivated

by physical science.
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The idea of classifying geometric structures

through group theory dated back to the fa-

mous Erlangen Program of Felix Klein and

the later work of E. Cartan.

Most geometric structures are defined by a

family of special coordinate charts such that

the coordinate transformations or the Jaco-

bian of the coordinate transformations re-

spect some algebraic structure, such as a

complex structure, an affine structure, a pro-

jective structure or a foliated structure.
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Special coordinate systems give connections

on natural bundles such as the tangent bun-

dles or some bundles construct from tangent

bundles. (Projective structure is related to

tangent bundle plus the trivial line bundle, for

example.) Connections provide ways to co-

variantly differentiate vector fields along any

curve. For any closed loop at a fixed point,

parallel transportation along the loop gives

rise to a linear transformation of the tangent

space at the point to itself.
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The totality of such transformations forms a

group called the holonomy group of the con-

nection. This group reflects the algebraic as-

pects of the geometric structure. Therefore,

a necessary condition for the geometric struc-

ture to exist is the existence of a connection

with a special holonomy group on some nat-

ural bundle.
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On the other hand, connections give rise to

a torsion tensor. In order for the existence

of a connection with special holonomy group

to become sufficient condition for existence

of preferred coordinate systems, we usually

require the torsion tensor of the connection

to be trivial.
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In fact, Cartan-Kähler developed an exten-

sive theory of exterior differential systems to

provide proofs that, in the real analytic cat-

egory, existence of a torsion-free connection

with special holonomy group is indeed suf-

ficient for the existence of local coordinate

systems for most geometric structures.
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The smooth version of Cartan-Kähler the-

ory has not been established in general. The

most spectacular work to date was due to

Newlander-Nirenberg on the existence of an

integrable complex structure, assuming the

complex Frobenius condition. In accordance

with our previous discussion, Newlander-Nirenberg

proved that if the tangent bundle admits a

connection with holonomy group U(n) and

the torsion form equal to zero, then the man-

ifold admits a complex structure.
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The paper of Newlander-Nirenberg is the first

application of nonlinear partial differential equa-

tions to constructing geometric structures.

Cartan-Kähler theory and Newlander-Nirenberg

theory are key contributions to the local the-

ory of geometry.
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The global theory of geometric structures is

quite complicated and is far from being com-

pleted. Deformation theory of global struc-

ture was initiated by Kodaira-Spencer. Calabi-

Vessiniti and Kuranishi studied deformations

of complex structures based on Hodge theory.

Calabi, Weil, Borel, Matsushima and others

studied deformations of geometric structures

on deformation of discrete group which even-

tually lead to the global rigidity theorems of

Mostow and Margulius for locally symmetric

spaces.

12



The approaches of using periods of holomor-

phic forms (Toreli) and geometric invariant

theory (Mumford) to study global algebraic

structures are very powerful. Geometric in-

variant theory has modern interpretations in

terms of moment maps of group actions on

symplectic manifold. Moment maps and sym-

plectic reductions have important consequence

on the theory of nonlinear differential equa-

tions.
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The idea is that stability arose from actions

of noncompact groups and based on this, I

proposed the following point of view. If there

is a noncompact group acting behind a sys-

tem of nonlinear differential equations, the

existence question of such system will be re-

lated to the question of the stability of some

algebraic structure that defines this system

of nonlinear system.
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An important example is the existence of the

Kähler-Einstein metric on Fano manifolds where

I conjectured to be equivalent to the stabil-

ity of the algebraic manifolds in the sense of

geometric invariant theory.
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I shall only touch on the part of geometric

structures that can be studied by nonlinear

differential equations. They are questions

that I am fond of.

The basic idea is to use nonlinear differen-

tial equations to build geometric structures

which in turn can be used to solve problems

in topology or algebraic geometry.
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Historically the first global question on geo-

metric structure is the uniformization of con-

formal structure for domains in the plane.

This question dates back to Riemann. It is

still an important problem. For instance, we

are still trying to understand the structure

of moduli space of complex structures over

manifolds.
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For two dimensional domains, the uniformiza-

tion theorem of conformal structure gives a

description of canonical domains which are

bounded by circular arcs. Any finitely con-

nected domain must be conformal to such

canonical domains. (The moduli space of

such canonical domains can be described eas-

ily.)
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On the other hand, we can say that any

finitely connected domain admits a conformal

metric which is flat and whose boundary has

constant geodesic curvature. The question

of uniformization is then reduced to proving

existence and classifying such conformal met-

rics. Such differential geometric interpreta-

tions of problems in conformal geometry is

the approach that we shall follow.
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For surfaces with higher genus, there are nat-

ural conformal metrics that have constant

negative curvature. Poincaré was the first to

demonstrate that every metric can be con-

formally deformed to a unique metric with

curvature equal to −1. The construction of

the Poincaré metric has been fundamental

in the understanding of the moduli space of

Riemann surfaces.

20



The cotangent space of the moduli space are

represented by holomorphic quadratic differ-

entials. Using the Poincaré metric, one can

define an inner product among such quadratic

differentials and integrate the product over

the surface. The resulting metric can be

proved to be a Kähler metric called the Weil-

Peterson metric.

21



On the Riemann surface, there are simple

closed geodesics that will decompose the Rie-

mann surface into a planar domain. The

function defined by minus log of the sum of

the length of these geodesic defines a convex

function along geodesics of the Weil-Peterson

geometry. In particular, it can be used to

prove the universal cover of the moduli space

is contractible and is a Stein manifold.
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Holomorphic quadratic differential is very im-

portant in classical surface theory. For ex-

ample, if a map from a Riemann surface into

another manifold is harmonic (the map is a

critical map of the energy), the pulled back

metric
∑

hijdxidxj gives rise to a holomorphic

quadratic differential

h11 − h22 + 2
√−1h12.
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This well known statements allows one to ap-

ply harmonic map to study the geometry of

Teichmüller space. Michael Wolf made use

of them to give a compactification which is

equivalent to the Thurston compactification

of the Teichmüller space, which depends on

the theory of measured foliation.
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Another interesting application of holomor-

phic quadratic differential is to solve the vac-

uum Einstein equation for spacetime with di-

mensional two plus one. Given a conformal

structure on a Riemann surface and a holo-

morphic quadratic differential, the Einstein

equation gives a path in the cotangent space

of the Teichmüller space of the Riemann sur-

face.
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The Weil-Peterson metric is not complete in

general. However, the negative of its Ricci

tensor is complete. Liu, Sun and myself proved

that it is equivalent to the Teichmüller met-

ric which is obtained by considering extremal

quasiconformal maps between Riemann sur-

faces. It is also equivalent to the canoni-

cal Kähler-Einstein metric that I shall discuss

later.
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There has been attempts to find a good rep-

resentation of Teichmüller space or the mod-

uli space of Riemann surfaces. For genus

greater than 23, Harris-Mumford proved that

moduli space is of general type. Hence there

is no good parametrization of moduli space.
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Teichmüller space has an embedding into C3g−3

due to Bers. However, it is not explicit and

it is not known how smooth the boundary is.

If a bounded domain is smooth, the curva-

ture of the canonical Kähler-Einstein metric

must be asymptotic to constant negative cur-

vature in a neighborhood of the point where

the domain is convex. This was observed by

Cheng-Yau.
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Since the moduli space of Riemann surfaces

have a compactification where the divisor at

infinity cannot be blown down to a point, the

Kähler-Einstein metric cannot be asymptotic

to constant negative curvature in any neigh-

borhood. Hence there is no representation of

the Teichmüller space as a smooth domain.
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The question of how to represent a confor-

mal structure on a Riemann surface is quite

interesting. Of course one can compute pe-

riods of holomorphic differentials over cycles

and Torelli theorem asserts that they can de-

termine the conformal structure of a generic

surface. However, how to construct the Rie-

mann surface explicitly from the period is not

clear. This is especially true if we want to

recognize it in R3. Can we find canonical

surfaces in three space that represent differ-

ent conformal structures of the surface?
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There is another important geometric struc-

ture over a two dimensional surface with higher

genus. This is the projective structure. They

are defined by coordinate neighborhoods whose

coordinate transformations are given by pro-

jective transformations. There is a map from

the universal cover of the surface to RP2

which preserves the projective structures. If

the image is a convex domain, we call the

projective structure convex. It turns out that

convex projective structures are classified by

Riemann surfaces with a cubic holomorphic

differentials.
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Since this classification is a good illustration

of how we construct geometric structures, I

shall discuss the construction little more de-

tail.

Convex projective structure on a manifold

has an invariant metric obtained in the fol-

lowing way:

32



The structure is obtained by the quotient of

a bounded convex domain Ω in Rn quotiented

by a discrete group of projective transforma-

tions. A projectively invariant metric on Ω is

obtained by solving the following equation




det
( ∂u

∂xi∂xj

)
=

(
−1

u

)n+2

u = 0 on ∂Ω.
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The following metric

∑(
−1

u

) ∂2u

∂xi∂xj
dxi ∧ dxj

is observed by Tzitzeica (Rend. Circ. Mat.

Palermo,25(1908)) and Loewner and Niren-

berg (Contributions to analysis,1974) to be

invariant under projective transformation. It

generalizes the Hilbert model of the Poincarè

disk.
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Loewner-Nirenberg proved the existence and

completeness of the metric for n = 2. The

general case was proved by Cheng-Yau. The

Ricci curvature of the metric can be proved

to be negative.
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A Legendre transformation will transform the

graph (x, u(x)) to a new convex surface which

is an affine sphere
∑

. (Affine sphere is a hy-

persurface where all affine normals converge

to a point. Affine normal is a vector transver-

sal to the tangent space invariant under the

affine group.) The discrete group of projec-

tive transformation become affine group of

R3 acting on
∑

. (This construction was ob-

served by Calabi.)

The affine metric can be written as evds2

where ds2 = eφ | dz |2 is the hyperbolic metric

on a Riemann surface.
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Using the structure equation for affine sphere,

Simon and Wang observed that the Pick cu-

bic form in affine geometry is an holomorphic

cubic differential Ψdz3 on the Riemann sur-

face defined by the affine metric so that

4v + 4exp(−2v) ‖ Ψ ‖2 −2exp(v)− 2K = 0,

where K is the Gauss curvature of the confor-

mal metric. conversely, given a holomorphic

cubic differential on a Riemann surface, a so-

lution v of the above equation can be used

to define an affine sphere in R3 which in turn

gives rise to the projective structure.
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The projective connection is in fact given by
(

∂v + ∂φ v exp(−v − φ)dz̄
v exp(−v − φ)dz ∂̄v + ∂̄φ

)

with respect to the basis { ∂
∂z , ∂

∂z̄}.

Hence we have a good classification of con-

vex projective structure over a Riemann sur-

face. In general, there are projective struc-

tures which are not convex.
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Choi has proved that projective structures on

surfaces can be uniquely decomposed into

several pieces. However, we do not have

good understanding of the nonconvex part

of the projective structure. The study of the

moduli space of convex projective structure

on surfaces was due to Hitchin, Goldman and

Loftin using different approaches. The above

approach relating it to affine spheres was due

to Loftin.
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Compact Riemann surface with higher genus

cannot admit affine structures. But open

surfaces may admit such a structure. In gen-

eral, we are interested in affine structures

over a compact manifold which may be singu-

lar along a codimensional two complex. The

coordinate transformations are linear whose

Jacobian has determinant equal to one.
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Motivated by our study of real Monge-Ampere

equations and Kähler geometry, S.Y. Cheng

and I considered in 1979 affine manifolds which

may support a metric which we called affine

Kähler metric. This is a Riemannian metric

which has the property that in each affine

chart, there is a convex potential Vα where

the metric can be written as

∑ ∂2Vα

∂xi∂xj
dxidxj.

Note that the potentials are well defined up

to a linear function.
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The equation

det
( ∂2uα

∂xi∂xj

)
= 1

is well-defined and can be considered as an

analogue of the corresponding equation for

Calabi-Yau Kähler metrics. In fact, one sim-

ply introduces coordinates yi and define zi =

xi +
√−1yi. Then we can extend uα to be

a function on zi and obtain a Kähler metric

with zero Ricci curvature.

Note that the equation and the affine struc-

tures are defined only on the complement of

a codimensional two complex. There is a

monodromy associated to the equation. The

study of existence for the equation with a

given monodromy can be considered as an

nonlinear analogue of the Riemann-Hilbert

correspondence.
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If the monodromy preserves some lattice struc-

ture, we can define a torus bundle over the

affine manifold where the total space is a

Ricci flat Kähler manifold. Strominger, Za-

slow and myself conjectured that most Calabi-

Yau manifold can be deformed to a com-

plex manifold admitting a (singular) fibra-

tion structure, whose fibers are special La-

grangian torus. These are minimal Lagrangian

submanifolds and were studied by Harvey and

Lawson from different point of view.
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There is another geometric structure that

is of importance in surface theory. This is

the line field structure (with singularity) on a

surface. An important case is the line field

defined by holomorphic quadratic differential

and a polynomial vector field. The former

case is used by Thurston to forma compact-

ification of the Teichmüller space and the

later case is related to the famous Hilbert

sixteenth problem which asked the number

of limit cycles associated to the vector field.

The behavior of the singular points of the

line field has practical importance also, e.g.,

in the study of finger print.
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The attempts to generalize these structures

on Riemann surfaces to higher dimensional

manifolds have occupied the activities of ge-

ometric analysts in the past thirty years. The

fact that there are much more freedom in

higher dimensional manifolds mean that there

are many different varieties of geometric struc-

tures.
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