Abstract:
The structure of rational solutions to a polynomial equation
depends on the structure of corresponding algebraic variety.
In case of a curve of genus zero, the problem of find all solutions
can be completely solved using Hasse-Minkowski principle.
In case of genus one, the obstruction to the Hasse-Minkowski principle
is conjectured to be finite; and the set of rational points is a finitely
generated group by the Mordell-Weil theorem if it not empty.
In case of genus two or bigger, the set of solutions is finite by Faltings
theorem.
A major unsolved problem today is the effectivity of solutions for
curves of genus one or bigger. For elliptic curves, one has the Birch
and Swinnerton-Dyer (BSD) conjecture which relates the Mordell-Weil group
and the central values of L-series arising from counting rational points
over finite fields. For curves of genus two or bigger, one has the ABC
conjecture and its refinements providing some effective bounds for curves.
In function field case, these conjectures are consequences of
Bogomolov-Miyaoka-Yau.