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1. Nondimensionalization

The Knudsen number is a nondimensional parameter that quantifies when
a gas is in a fluid dynamical regime. In 1912 Hilbert proposed that it should
be at the heart of every systematic derivation of any fluid dynamical sys-
tem. Consider the Boltzmann initial-value problem

∂tF + v ·∇xF = B(F, F ) , F (v, x,0) = F in(v, x) .

In order to remove complications due to boundaries, we consider the spa-
tial domain Ω to be a periodic box TD. The dimensional scales of this
problem can be identified as follows.

First, the volume of the periodic box determines a length scale λo by setting
∫

dx = λD
o .

The sides of the box Ω need not all have the same length; however, all of
these lengths are assumed to be of the same order.



Next, we determine two other dimensional scales from the initial data F in.
One can always find a Galilean frame in which

∫∫
v F in dv dx = 0 .

Therefore one cannot obtain a meaningful dimensional scale from the total
momentum of the initial data. However, the total mass and total energy of
the initial data F in determine a density scale ρo and a velocity scale θ

1/2
o

by the relations
∫∫

F in dv dx = ρoλ
D
o ,

∫∫
1
2|v|

2F in dv dx = D
2 ρoθoλ

D
o .

The equilibrium associated with the initial data F in is given by

Mo ≡ M(ρo,0, θo) =
ρo

(2πθo)D/2
exp

(
− |v|2

2θo

)
.



Finally, the collision operator determines a time scale τo by
∫∫∫

Mo1Mo b(ω, v1 − v) dω dv1 dv =
ρo

τo
.

This time is on the order of the time interval that molecules in the equi-
librium density Mo spend traveling freely between collisions, the so-called
mean free time. The time scale τo times the velocity scale θ

1/2
o therefore

gives the length scale of the mean free path.

Now that the dimensional scales of the Boltzmann initial-value problem
have been identified, it can be reformulated in terms of nondimensional
variables. These are introduced below adorned with hats. Nondimensional
velocity, space, and time are defined by

v = θ
1/2
o v̂ , x = λo x̂ , t =

λo

θ
1/2
o

t̂ . (1)



A nondimensional kinetic density is then given by

F (v, x, t) =
ρo

θ
D/2
o

F̂ (v̂, x̂, t̂ ) ,

while a nondimensional collision operator is given by

B(F, F )(v, x, t) =
ρo

τoθ
D/2
o

B̂(F̂ , F̂ )(v̂, x̂, t̂ ) .

This nondimensional collision operator has the form

B̂(f̂ , f̂) =

∫∫ (
f̂ ′
1f̂ ′ − f̂1f̂

)
b̂dω dv̂1 ,

where the nondimensional collision kernel is given by

b(ω, v1 − v) =
1

ρoτo
b̂(ω, v̂1 − v̂) .



Substituting these relations into the Boltzmann equation and henceforth
dropping all hats yields the nondimensional initial-value problem

∂tF + v ·∇xF =
1

ε
B(F, F ) , F (v, x, t) = F in(v, x) .

where ε = θ
1/2
o τo/λo is the Knudsen number. The Knudsen number is

the ratio of the scale of mean-free-paths to the macroscopic length scale.
Fluid dynamical regimes are characterized by the Knudsen number being
small. We consider families of solutions Fε parametrized by ε.

The nondimensional equilibrium associated with this problem is the so-
called unit Maxwellian

M ≡ M(1,0,1) =
1

(2π)D/2
exp

(
− |v|2

2

)
,



2. Linear and Weakly Nonlinear Systems

We consider fluid dynamical regimes in which F is close to the spatially
homogeneous Maxwellian M = M(v). By an appropriate choice of a
Galilean frame and of mass and velocity units, it can be assumed that this
Maxwellian has the form

M(v) ≡ M(v; 1,0,1) =
1

(2π)D/2
exp(−1

2|v|
2) .

This corresponds to the spatially homogeneous fluid state with mass den-
sity and temperature equal to 1 and bulk velocity equal to 0.

We then seek solutions of the form

Fε(v, x, t) = M(v)
(
1 + δε gε(v, x, t)

)
,

where δε satisfies δε → 0 as ε → 0.



Infinitesimal Maxwellians

Assuming that gε converges to g as ε → 0, one can show that

gε → g = ρ + v ·u + (1
2|v|

2 − D
2 )θ ,

where ρ(x, t), u(x, t), and θ(x, t) are fluctuations of the mass density,
bulk velocity, and temperature about their equilibrium values: 1, 0, and 1.
This limiting form is a so-called infinitesimal Maxwellian because

M(v; 1 + δερ, δεu,1 + δεθ) = M(v)
(
1 + δεg + O(δ 2

ε )
)

.

It is the limiting form shared by the leading orders of all linear and weakly
nonlinear fluid dynamical approximations.



Acoustic Scaling

Upon passing to the limit in the local conservation laws associated with

∂tFε + v ·∇xFε =
1

ε
B(Fε, Fε) ,

one finds that the fluctuations ρ, u, and θ satisfy

∂tρ + ∇x· u = 0 ,

∂tu + ∇x(ρ + θ) = 0 ,
D
2 ∂tθ + ∇x· u = 0 .

This is the acoustic system. It is the linearization about the homogeneous
state of the compressible Euler system. It is one of the simplest systems of
fluid dynamical equations imaginable, being essentially the wave equation.



Derivation of Incompressible Systems

It is easily seen that when ρ, u, and θ satisfy

∇x · u = 0 , ∇x(ρ + θ) = 0 ,

they are a stationary solution of the acoustic system which will gener-
ally vary in space. On the other hand, it can be shown that absolute
Maxwellians are the only stationary solutions of the Boltzmann equation.

It is clear that the time scale at which the acoustic system was derived
was not long enough to see the evolution of these solutions. We therefore
consider the Boltzmann equation over a longer time scale 1/τε:

τε∂tFε + v ·∇xFε =
1

ε
B(Fε, Fε) ,

where τε → 0 as ε → 0.



One can give formal moment derivations of three incompressible fluid dy-
namical systems, depending on the limiting behavior of the ratio δε/ε as
ε → 0:

• When δε/ε → 0, one considers time scales on the order of 1/ε (by
choosing τε = ε) and an incompressible Stokes system is derived.

• When δε/ε → 1 (or any other nonzero number), one considers time
scales on the order of 1/ε (τε = ε) and an incompressible Navier-
Stokes system is derived.

• When δε/ε → ∞, one considers time scales on the order of 1/δε

(τε = δε), and an incompressible Euler system is derived.

What underlies this result is the fact that δε/ε is the Reynolds number.



Incompressible Stokes System

∇x · u = 0 , ρ + θ = 0 .

∂tu + ∇xp = µ∆xu ,
D+2

2 ∂tθ = κ∆xθ ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) .

Here µ > 0 and κ > 0 are the viscosity and thermal conductivity coef-
ficients. Like the acoustic system, the Stokes system is also one of the
simplest systems of fluid dynamical equations imaginable, being essen-
tially a system of linear heat equations.



Incompressible Navier-Stokes System

∇x · u = 0 , ρ + θ = 0 .

∂tu + u ·∇xu + ∇xp = µ∆xu ,
D+2

2

(
∂tθ + u ·∇xθ

)
= κ∆xθ ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) .

Here the viscosity and thermal conductivity coefficients, µ and κ, have the
same values as in the Stokes system. Unlike the Stokes system however,
the Navier-Stokes system is nonlinear. While this fact does not complicate
its formal derivation, it makes the mathematical establishment of its validity
much harder.



Incompressible Euler System

∇x · u = 0 , ρ + θ = 0 .

∂tu + u ·∇xu + ∇xp = 0 ,
D+2

2

(
∂tθ + u ·∇xθ

)
= 0 ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) .

Like the Navier-Stokes system, the Euler system is nonlinear. The full
mathematical establishment of its validity is also an open problem.

As was the case for the acoustic system, the Euler system has stationary
solutions that vary in space. It is clear that the time scale at which the Euler
system was derived was not long enough to see the evolution of these
solutions. Even at a formal level it is unclear how this long-time evolution
should be governed.



Weakly Compressible Systems

A fluid dynamical system that formally includes both the acoustic and the
Stokes limits is the so-called weakly compressible Stokes system

∂tρε + ∇x · uε = 0 ,

∂tuε + ∇x(ρε + θε) = εµ∇x·
[
∇xuε + (∇xuε)

T − 2
D∇x· uεI

]
,

D
2 ∂tθε + ∇x · uε = εκ∆xθε .

Notice that ε appears in the approximating system.

A so-called weakly compressible Navier-Stokes system that formally in-
cludes both the acoustic and the Navier-Stokes limits is much harder to
write down. Jiang-L have derived such a system from the Boltzmann equa-
tion. It decomposes into a component governed by the incompressible
Navier-Stokes system and a component governed by a nonlocal quadratic
acoustic equation that couples to the incompressible component.



Remarks

Finally, it should be pointed out that the above systems are not the only
incompressible Stokes, Navier-Stokes, and Euler systems that may be de-
rived as fluid dynamical limits of the Boltzmann equation. More refined
asymptotic balances lead to incompressible Stokes, Navier-Stokes, and
Euler systems that differ from those above in that (1) the heat equation in-
cludes a viscous heating term and (2) the Boussinesq relation is replaced
by p = ρ + θ. These also have moment-based derivations. One should
therefore be careful about referring to “the incompressible Stokes system”
(for example) until it is clear to which Stokes system you are referring.

In addition, there are other systems that have moment-based derivations,
including some that are “beyond Navier-Stokes”. The goals of the BGL
program (1989) are (1) to identify those fluid dynamical systems that can be
so derived, and (2) to give a full mathematical justification of those formal
derivations.



3. Global Solutions

We now make more precise: (1) the notion of solution for the Boltzmann
equation, and (2) the notion of solution for the fluid dynamical systems.
Ideally, these solutions should be global while the bounds should be phys-
ically natural.

We therefore work in the setting of DiPerna-Lions renormalized solutions
for the Boltzmann equation, and in the setting of Leray solutions for the
Navier-Stokes system. These theories have the virtues of considering
physically natural classes of initial data, and consequently, of yielding global
solutions.

One of the main goals of the BGL program was to connect the DiPerna-
Lions theory of renormalized solutions of the Boltzmann equation to the
Leray theory of weak solutions of the incompressible Navier-Stokes sys-
tem.



DiPerna-Lions Theory

The DiPerna-Lions theory gives the existence of a global weak solution to
a class of formally equivalent initial-value problems that are obtained by
multiplying the Boltzmann equation by Γ′(G), where Γ′ is the derivative of
an admissible function Γ:

(
τε ∂t + v ·∇x

)
Γ(F ) =

1

ε
Γ′(F )B(F, F ) ,

F (v, x,0) = F in(v, x) ≥ 0 .

This is the so-called renormalized Boltzmann equation. A differentiable
function Γ : [0,∞) → R is called admissible if for some constant CΓ < ∞
it satisfies

∣∣∣Γ′(Z)
∣∣∣ ≤ CΓ√

1 + Z
for every Z ≥ 0 .

The solutions lie in C([0,∞);w-L1(Mdv dx)), where the prefix “w-” on
a space indicates that the space is endowed with its weak topology.



DiPerna-Lions Theorem - 1

Theorem. 1 (DiPerna-Lions Renormalized Solutions) Let b satisfy

lim
|v|→∞

1

1 + |v|2
∫

SD−1×K
b(ω, v1 − v) dω dv1 = 0

for every compact K ⊂ RD .

Given any initial data F in in the entropy class

E(Mdv dx) =
{
F in ≥ 0 : H(F in) < ∞

}
,

there exists at least one F ≥ 0 in C([0,∞);w-L1(Mdv dx)) that for
every admissible function Γ is a weak solution of renormalized Boltzmann
equation.



This solution satisfies a weak form of the local conservation law of mass

τε ∂t〈F 〉 + ∇x · 〈v F 〉 = 0 .

Moreover, there exists a matrix-valued distribution W such that W dx is
a nonnegative definite measure and G and W satisfy a weak form of the
local conservation law of momentum

τε ∂t〈v F 〉 + ∇x· 〈v ⊗ v F 〉 + ∇x · W = 0 ,

and for every t > 0, the global energy equality
∫
〈12|v|

2F (t)〉 dx +

∫
1
2 tr(W (t)) dx =

∫
〈12|v|

2F in〉dx ,



and the global entropy inequality

H(F (t)) +
∫

1
2 tr(W (t)) dx +

1

τεε

∫ t

0
R(F (s)) ds ≤ H(F in) ,

where the relative entropy functional H is given by

H(F ) =

∫ 〈
F log

(
F

M

)
− F + M

〉
dx ≥ 0 ,

while the entropy dissipation rate functional R is given by

R(F ) =

∫∫∫∫
1
4 log

(
F ′
1F ′

F1F

)
(F ′

1F ′ − F1F ) bdω dv1 dv dx ≥ 0 .



DiPerna-Lions Theorem - 3

Remarks: DiPerna-Lions renormalized solutions are very weak — much
weaker than standard weak solutions. They are not known to satisfy many
properties that one would formally expect to be satisfied by solutions of the
Boltzmann equation. In particular, the theory does not assert either

• the formally expected local momentum conservation law,

• the formally expected global energy conservation law,

• any local energy conservation law or inequality,

• any global entropy equality,

• any local entropy inequality,

• or the uniqueness of the solution.



Leray Theory

The DiPerna-Lions theory has many similarities with the Leray theory of
global weak solutions of the initial-value problem for Navier-Stokes type
systems. For the Navier-Stokes system with mean zero initial data, we set
the Leray theory in the following Hilbert spaces of vector- and scalar-valued
functions:

Hv =

{
w ∈ L2(dx;R

D) : ∇x · w = 0 ,
∫

w dx = 0

}
,

Hs =

{
χ ∈ L2(dx;R) :

∫
χdx = 0

}
,

Vv =

{
w ∈ Hv :

∫
|∇xw|2 dx < ∞

}
,

Vs =

{
χ ∈ Hs :

∫
|∇xχ|2 dx < ∞

}
.

Let H = Hv ⊕ Hs and V = Vv ⊕ Vs.



Leray Theorem

Theorem. 2 (Leray Solutions) Given any initial data (uin, θin) ∈ H, there
exists at least one (u, θ) ∈ C([0,∞);w-H) ∩ L2(dt; V) that is a weak
solution of the Navier-Stokes system. Moreover, for every t > 0, (u, θ)

satisfies the dissipation inequalities
∫

1
2|u(t)|2dx +

∫ t

0

∫
ν|∇xu|2dxds ≤

∫
1
2|u

in|2dx ,
∫

D+2
4 |θ(t)|2dx +

∫ t

0

∫
κ|∇xθ|2dxds ≤

∫
D+2

4 |θin|2dx .

Remarks: By arguing formally from the Navier-Stokes system, one would
expect these inequalities to be equalities. However, that is not asserted by
the Leray theory. Also, as was the case for the DiPerna-Lions theory, the
Leray theory does not assert uniqueness of the solution.



A Variant of Leray Theory

Because the role of the above dissipation inequalities is to provide a-priori
estimates, the existence theory also works if they are replaced by the single
dissipation inequality

∫
1
2|u(t)|2 + D+2

4 |θ(t)|2dx +
∫ t

0

∫
ν|∇xu|2 + κ|∇xθ|2dx ds

≤
∫

1
2|u

in|2 + D+2
4 |θin|2dx .

It is this version of the Leray theory that we will obtain in the limit.



Weakly Compressible Navier-Stokes System

Jiang-L have shown that the weakly compressible Navier-Stokes system
has a global weak solution in L2. This result includes the Leray theory, so
it cannot be improved easily. As with the Leray theory, the key to this result
is an “energy” dissipation estimate. Indeed, this global existence result
is very general. Jiang also has used a Littlewood-Payly decomposition to
show the acoustic part is unique for a given incompressible component.

The general setting for their existence result is the following.



Let U 7→ H(U) be a strictly convex entropy for the system

∂tU + ∇x · F (U) = ε∇x ·
[
D(U)∇xHU(U)

]
.

This means that there exist J(U) such that (Friedrichs-Lax)

HU(U)FU(U) = JU(U) ,

and that

∇xHU(U) ·D(U)∇xHU(U) ≥ 0 .

Hence, one has the local dissipation law

∂tH(U) + ∇x · J(U) = ε∇x ·
[
HU(U)D(U)∇xHU(U)

]

− ε∇xHU(U) ·D(U)∇xHU(U) .



The weakly nonlinear approximation of the solution Uε to this system near
a constant solution Uo is Uε = Uo + εŨε where Ũε satisfies

∂tŨε + A · ∇xŨε + ε∇x · Q(Ũε, Ũε) = ε∇x ·
[
D∇xŨε

]
,

where A = FU(Uo),

Q(V, V ) = lim
T→∞

1

2T

∫ T

0
etA ·∇xFUU(Uo)(e

−tA ·∇xV, e−tA ·∇xV ) dt

D = lim
T→∞

1

T

∫ T

0
etA ·∇xD(Uo)e

−tA ·∇x dt .

Jiang-L show this system has a quadratic entropy dissipation, and that un-
der mild assumptions (satisfied by the weakly compressible Navier-Stokes
approximation) it has global solutions.



5. Survey of Some Results

The goals of the BGL program (1989) are (1) to identify those fluid dynam-
ical systems that can be so derived, and (2) to give a full mathematical
justification of those formal derivations.

The main result of [BGL93] for the Navier-Stokes limit is to recover the
motion equation for a discrete-time version of the Boltzmann equation as-
suming the DiPerna-Lions solutions satisfy the local conservation of mo-
mentum and with the aid of a mild compactness assumption.

This result fell short of the goal in five respects.

• First, the heat equation was not treated because the |v|2v terms in the
heat flux could not be controlled.



• Second, local momentum conservation was assumed because DiPerna-
Lions solutions are not known to satisfy the local conservation law of
momentum (or energy) that one would formally expect.

• Third, unnatural technical assumptions were made on the Boltzmann
collision kernel.

• Fourth, the discrete-time case was treated in order to avoid having to
control the time regularity of the acoustic modes.

• Finally, a mild compactness assumption was required to pass to the
limit in certain nonlinear terms.

In recent works all of these shortcomings have been overcome.



Review of the Scaling Relationships

Consider the scaled Boltzmann equation

τε∂tFε + v · ∇xFε =
1

ε
B(Fε, Fε) ,

Fε = M
(
1 + δεgε

)
.

One derives the acoustic system when τε = 1 and

δε → 0 .

One derives the incompressible Stokes, the incompressible Navier-Stokes,
and the incompressible Euler system when τε = max{ε, δε}, δε → 0 and
respectively

δε

ε
→ 0 ,

δε

ε
→ 1 ,

δε

ε
→ ∞ .



Scaling of the Fluctuations

The scaling of the fluctuations is controlled by assuming that

∫ 〈
F in

ε log

(
F in

ε

M

)
− F in

ε + M

〉
dx < Cinδ 2

ε .

The entropy inequality then implies that

Fε = M
(
1 + δεgε

)
,

where gε is compact in w-L1. Moreover, it implies that every limit point
must have the form of an infinitesimal Maxwellian

gε → ρ + v ·u + (1
2|v|

2 − D
2 )θ ,

where ρ, u, θ are in L2.



Bardos-Golse-Levermore

Bardos, Golse, and Levermore [BGL98] recover the acoustic and the Stokes
limits for the Boltzmann equation for cutoff collision kernels that arise from
Maxwell potentials. In doing so, they control the energy flux and estab-
lish the local conservation laws of momentum and energy in the limit. The
scaling they used was not optimal, essentially requiring

δε

ε
→ 0 rather than δε → 0 for the acoustic limit ,

δε

ε2
→ 0 rather than

δε

ε
→ 0 for the Stokes limit .



Lions-Masmoudi

Lions and Masmoudi [LM00] recover the Navier-Stokes motion equation
with the aid of only the local conservation of momentum assumption and
the nonlinear compactness assumption that were made in [BGL93]. How-
ever, they do not recover the heat equation and they retain the same un-
natural technical assumptions made in [BGL93] on the collision kernel.

There were two key new ingredients in their work. First, they were able to
control the time regularity of the acoustic modes. Second, they were able
to prove that the contribution of the acoustic modes to the limiting motion
equation is just an extra gradiant term that can be incorporated into the
pressure term.



Lions-Masmoudi - 2

They also recover the Stokes motion equation without the local conserva-
tion of momentum assumption and with essentially optimal scaling. How-
ever, they do not recover the heat equation and they retain the same un-
natural technical assumptions made in [BGL93] on the collision kernel.

There are two reasons they do not recover the heat equation. First, it is
unknown whether or not DiPerna-Lions solutions satisfy a local energy con-
servation law. Second, even if local energy conservation were assumed,
the techniques they used to control the momentum flux would fail to control
the heat flux.



Golse-Levermore - 1

Golse and Levermore [GL01] recover the acoustic and Stokes systems.
They make natural assumptions on the collision kernel that include those
classically derived from hard potentials.

For the Stokes limit they recover both the motion and heat equations with
a near optimal scaling.

For the acoustic limit the scaling they used was not optimal, essentially
requiring

δε

ε
1
2

→ 0 rather than δε → 0 .



Golse-Levermore - 2

There were two key new ingredients in this work. First, they control the
local momentum and energy conservation defects of the DiPerna-Lions
solutions with dissipation rate estimates that allowed them to recover these
local conservation laws in the limit. Second, they also control the heat flux
with dissipation rate estimates.

Because they treat the linear Stokes case, they do not face the need either
to control the acoustic modes or for a compactness assumption, both of
which are used to pass to the limit in the nonlinear terms in [LM00].



Saint Raymond

Without making any nonlinear compactness hypothesis, Saint Raymond
[SR98] recovers the Navier-Stokes motion equation for the BGK model.
This was a fundamental advance, but it took some time to extract the es-
sential ingredients in a way that would impact the Boltzmann equation.

The flavor of her result is that every appropriately scaled family of BGK
solutions has fluctuations that are compact and that every limit point of
these fluctuations is an infinitesimal Maxwellian governed by the Navier-
Stokes motion equation.



Golse-Saint Raymond

Without making any nonlinear compactness hypothesis, Golse-Saint Ray-
mond [GSR04] recover the Navier-Stokes system for the Boltzmann equa-
tion with Grad-cutoff collision kernels that arise from Maxwell potentials.
Their major breakthrough was the development of a new L1 averaging
lemma to prove the compactness assumption. This was extracted from
Saint Raymond [SR98] where she recovered the Navier-Stokes limit for
the BGK model. Their proof also employs key elements from [LM00, GL01]
and from earlier work of Saint Raymond [SR99] on the incompressible Eu-
ler limit.

They have extended their result to the hard sphere collision kernel.



Levermore-Masmoudi

This extends the results of Golse and Saint Raymond. It recovers the
Navier-Stokes-Fourier system for the Boltzmann equation with weakly cut-
off collision kernels that arise from a wide range of hard and soft potentials.

Using the L1 averaging lemma of Golse-Saint Raymond, they show that
this nonlinear compactness hypothesis is satisfied. New estimates allow
one to extend the analysis beyond Grad cutoff collision kernels.

These new estimates also allow one to carry out the acoustic and Stokes
limits for soft potentials.



Jiang-Levermore

A relative entropy method is used to show (assuming a local energy con-
servation law) that over time scales on the order of 1/ε one has

gε ∼ ρε + v ·uε +
(
1
2|v|

2 − D
2

)
θε ,

where ρε, uε, and θε solve the weakly compressible Stokes system. Recall
that ε appears in that system. The key point here is that the convergence
is strong. Earlier works on the incompressible Stokes scaling obtained
strong convergence only for “well-prepared” initial data — that is, for initial
data with no acoustic modes in the limit.



5. Some Open Problems:

• the acoustic limit with optimal scaling (δε → 0);

• any limit for noncutoff collision kernels, which would require an exten-
sion of DiPerna-Lions theory;

• dominant-balance Stokes, Navier-Stokes, and Euler limits;

• uniform in time results (for example, for the weakly compressible Stokes
and Navier-Stokes approximations);

• any results for “beyond Navier-Stokes” approximations.


