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1. Historical Introduction

Euler first published his equations of fluid dynamics in 1757. His equa-
tions embodied the then known conservation laws of mass and momentum
(F = ma). While these equations were sufficient to govern the dynamics
liquids, Euler realized that his theory was incomplete for gases. He knew
that the pressure of a gas depended on its density and temperature (ideal
gas law), but had no additional equation to govern this additional unknown.

Fourier introduced his heat equation around 1810. He viewed it as govern-
ing the dynamics of a massless heat-carrying substance called caloric that
permeated all matter. His theory worked well in solids and some fluids.

By the early 1800’s experimental evidence had made it clear that the Euler
equations did not give a correct description of fluid dynamics even for liq-
uids. In 1823 this led Navier, who was inspired by Fourier, to introduce an
additional term into the momentum equation to model viscosity.



In the 1840s Mayer, Joule, Helmholz, and others formulated the conser-
vation law of energy when experiments indicated that heat was a form of
energy. This became the first law of thermodynamics.

This led to a new unified theory of gas dynamics. The Euler equations were
supplemented with an energy equation, thereby closing the system, while
Navier’s viscosity and Fourier’s thermal conductivity terms were included
in a consistent way. The resulting system became known as the Navier-
Stokes-Fourier, or simply as the Navier-Stokes system of gas dynamics. It
also respects the second law of thermodynamics, which was formulated in
the 1850s.

When viscosity and thermal conductivity are neglected, the system is still
called the Euler system of gas dynamics. This was the system studied by
Riemann in 1851.



In founding kinetic theory, Maxwell (1860, 1866) and Boltzmann (1872)
were testing the hypothesis that heat was the kinetic energy of molecules.
Their theory led to formulas for the viscosity and thermal conductivity co-
efficients in terms of the Newtonian intermolecular force law. This is one of
the earliest examples of what we now call an up-scaling theory.

Their theory was controversial at the time because the notion of molecule
was not generally accepted, and because their arguments had many gaps
— many of which still have to be bridged.

One fundamental question they had to address was how reversible micro-
scopic Newtonian mechanics could lead to irreversible macroscopic dy-
namics. Maxwell introduced the famous “Maxwell demon” as a device
to illustrate the statistical nature of macroscopic irreversibility in an 1867
private letter to Kelvin. The demon made its first public appearance in
Maxwell’s “Theory of Heat” published in 1871 .



Mathematicians came down on both sides of this controversy, which be-
came very intense in the 1890’s. Klein and Hilbert sided with Boltzmann.
(Maxwell had died in 1879.) Poincare and Zermelo took the other side.
They claimed that the Boltzmann equation is inconsistent with the Poincare
Recurrence Theorem, which had appeared in 1890.

Experimental evidence for the existence of atoms and molecules (based
on Einstein’s 1905 theory of Brownian motion) became generally accepted
around 1906. That changed, but did not stop the debate over the validity
of the Boltzmann equation. (Poincare did switch sides.) It was only in the
1970’s that the combination of careful experiments and careful simulations
led to a general belief in its validity.

The Boltzmann equation has been mathematically justified (for finite time)
only for the case of elastic hard spheres by Landford (1974) in the so-called
Boltzmann-Grad limit.



Here we will assume the validity of the Boltzmann equation, and will use
it as the starting point to establish fluid dynamical systems. Hilbert (1900
ICM) specifically called for this problem to be addressed as part of his sixth
problem.

Maxwell’s derivation of the Navier-Stokes system from the Boltzmann equa-
tion rests on arguments about how various terms in the “Boltzmann equa-
tion” balance each other. These balance arguments seemed arbitrary to
some, so Hilbert (1912) proposed that such derivations should be based
on a systematic expansion in a small nondimensional parameter, which we
now call the Knudsen number. Later Enskog (1916) proposed a somewhat
different systematic expansion, now often called the Chapman-Enskog ex-
pansion, in the same small parameter.



Full justification of traditional compressible fluid dynamical approximations
based on a formal Hilbert or Chapman-Enskog expansion has proven dif-
ficult because the basic well-posedness and regularity questions remain
open for both the compressible fluid systems and the Boltzmann equation.

The problem is exacerbated by the fact that to bound the error of these
asymptotic expansions requires control of successively higher order spatial
derivatives of the fluid variables.

By the later half of the 20th century theories of local in time well-posedness
for classical solutions had been developed by Grad, Ukai, Nishida, Caflisch,
and many others. The resulting justifications thereby were restricted to
a meager subset of all physically natural initial data and usually to finite
times.



In 1988 DiPerna-Lions gave a theory of global solutions to the Boltzmann
equation for all physically natural initial data. This theory rests on a com-
pactness argument, and therefore, does not yield uniqueness.

Their theory is similar in spirit to that of Leray (1934) regarding global solu-
tions to the incompressible Navier-Stokes system for all physically natural
initial data. It is natural to ask

“Does the Leray theory follow from that of DiPerna-Lions?”

It was shown by Golse-Saint Raymond in 2004 that the answer to this
question is “yes”. This result is part of a program that was begun in 1989
when Bardos-Golse-L gave a new formal derivation of the incompressible
Navier-Stokes system from the Boltzmann equation. Rather than use tradi-
tional expansions, they gave a moment-based derivation, which puts fewer
demands on the well-posedness and regularity theory.



More generally, this program seeks to:

• study derivations of linear or weakly nonlinear fluid dynamical systems,
such as the acoustic system and the incompressible systems for which
global theories exist;

• use moment-based formal derivations, which put fewer demands on
the well-posedness and regularity theory;

• work within the framework of DiPerna-Lions solutions, thereby within
the class of all physically natural initial data.

The second lecture will survey this program. The third lecture will present
an extension of the Golse-Saint Raymond result.



2. Boltzmann Equation Preliminaries

The state of a fluid composed of identical point particles confined to a
spatial domain Ω ⊂ RD is described at the kinetic level by a mass den-
sity F over the single-particle phase space RD × Ω. More specifically,
F (v, x, t) dv dx gives the mass of the particles that occupy any infinitesi-
mal volume dv dx centered at the velocity v ∈ RD and the position x ∈ Ω

at the instant of time t ≥ 0. To remove complications due to bound-
aries, we take Ω to be the periodic domain Ω = TD = RD/LD, where
LD ⊂ RD is any D-dimensional lattice. Here D ≥ 2.

The evolution of F = F (v, x, t) is governed by the Boltzmann equation:

∂tF + v ·∇xF = B(F, F ) , F (v, x,0) = F in(v, x) ≥ 0 . (1)



The Boltzmann collision operator B models binary collisions. It acts only
on the v argument of F . It is formally given by

B(F, F ) =

∫∫

SD−1×RD
(F ′

1F ′ − F1F ) b(ω, v1 − v) dω dv1 , (2)

where v1 ranges over RD endowed with its Lebesgue measure dv1 while
ω ranges over the unit sphere SD−1 = {ω ∈ RD : |ω| = 1} endowed
with its rotationally invariant measure dω. The F ′

1, F ′, F1, and F appearing
in the integrand designate F (·, x, t) evaluated at the velocities v′1, v′, v1,
and v respectively, where the primed velocities are defined by

v′1 = v1 − ω ω · (v1 − v) , v′ = v + ω ω · (v1 − v) , (3)

for any given (ω, v1, v) ∈ SD−1× RD× RD.

Quadratic operators like B are extended by polarization to be bilinear and
symmetric.



The unprimed and primed velocities are possible velocities for a pair of par-
ticles either before and after, or after and before, they interact through an
elastic binary collision. Conservation of momentum and energy for particle
pairs during collisions is expressed as

v + v1 = v′ + v′1 , |v|2 + |v1|
2 = |v′|2 + |v′1|

2 .

Equation (3) represents the general nontrivial solution of these D+1 equa-
tions for the 4D unknowns v′1, v′, v1, and v in terms of the 3D − 1 param-
eters (ω, v1, v).

The collision kernel b is positive almost everywhere. The Galilean invari-
ance of the collisional physics implies that b has the classical form

b(ω, v1 − v) = |v1 − v|Σ(|ω ·n|, |v1 − v|) ,

where n = (v1−v)/|v1−v| and Σ is the specific differential cross-section.



Maxwell gave a recipe (1866) for the collision kernel in terms of the inter-
molecular potential. For hard spheres of mass m and radius ro it yields

b(ω, v1 − v) = |ω · (v1 − v)|
(2ro)D−1

2m
.

For a repulsive intermolecular potential of the form c/rk with k > 2D−1
D+1 it

yields

b(ω, v1 − v) = b̂(ω ·n) |v1 − v|β with β = 1 − 2D−1
k ,

where n = (v1 − v)/|v1 − v| while b̂(ω ·n) is positive almost everywhere
and has even symmetry in ω ·n. The condition k > 2D−1

D+1 is equivalent to
β > −D, which insures that b(ω, v1 − v) is locally integrable with respect
to v1 − v.

The cases β > 0, β = 0, and β < 0 are called the “hard”, “Maxwell”, and
“soft” potential cases.



The function b̂(ω ·n) derived by Maxwell’s recipe (1866) for potentials of
the form c/rk has a singularity that is not locally integrable at ω ·n = 0.
This was not a problem for Maxwell because he used a weak form of the
Boltzmann equation that regularizes this singularity. Hilbert (1912) avoided
this problem by studying the Boltzmann equation for only the hard sphere
case. Grad (1954) was able to extended some of Hilbert’s analysis by
introducing a small deflection cutoff that requires b̂(ω ·n) to vanish like
|ω ·n| as ω ·n → 0 — the so-called Grad cutoff condition.

More generally one can assume that b̂(ω ·n) satisfies the less restrictive
small deflection cutoff condition

∫

SD−1
b̂(ω ·n) dω < ∞ .

This so-called weak cutoff condition is required to have the gain and loss
terms of the Boltzmann collision operator make sense separately.



Conservation Properties

Maxwell (1866) showed the collision operator has the following property
related to the conservation laws of mass, momentum, and energy.

For every measurable ζ the following are equivalent:

• ζ ∈ span{1, v1, · · · , vD, 1
2|v|

2};

• ζ′1 + ζ′ − ζ1 − ζ = 0 for every (ω, v1, v);

• 〈ζ B(f, f)〉 = 0 for “every” f = f(v).

Here we have introduced the notation 〈 · 〉 =
∫
·dv.



Local Conservation Laws

If F is a classical solution of the Boltzmann equation then F satisfies local
conservation laws of mass, momentum, and energy:

∂t〈F 〉 + ∇x· 〈v F 〉 = 0 ,

∂t〈v F 〉 + ∇x · 〈v ⊗ v F 〉 = 0 ,

∂t〈
1
2|v|

2F 〉 + ∇x· 〈v
1
2|v|

2F 〉 = 0 .



Dissipation Properties

Boltzmann’s H-Theorem (1872) states that the collision operator has the
following property related to the dissipation of entropy and equilibrium.

〈log(f)B(f, f)〉 = −
∫∫∫

1
4 log

(
f ′
1f ′

f1f

)
(f ′

1f ′ − f1f) bdω dv1 dv

≤ 0 for “every” f = f(v) .

Moreover, for “every” f = f(v) the following are equivalent:

• 〈log(f)B(f, f)〉 = 0 ,

• B(f, f) = 0 ,

• f is a Maxwellian, where ...



Maxwellians have the form

f = M(v; ρ, u, θ) =
ρ

(2πθ)
D
2

exp

(
−

|v − u|2

2θ

)
,

with ρ, u, and θ given by

ρ = 〈f〉 , ρu = 〈v f〉 , ρθ = 1
D〈|v − u|2f〉 .

Here ρ is the mass density, u is the bulk velocity, and θ = kBT/m where
kB is Boltzmann’s constant, T is the temperature of the gas, and m is the
molecular mass.

In 1860 Maxwell argued these were the local equilibrium kinetic densities
of gas dynamics. In 1866 he showed they were equilibria of what we now
call the Boltzmann collision operator. Both times he gave an argument that
they were the only such equilibria, but there were gaps in each argument.
In 1872 Boltzmann filled the gap in Maxwell’s second argument with his
H-Theorem.



Local Entropy Dissipation Law

If F is a classical solution of the Boltzmann equation then F satisfies a
local entropy dissipation law:

∂t〈(F log(F ) − F )〉 + ∇x · 〈v (F log(F ) − F )〉

= 〈log(F )B(F, F )〉

= −
∫∫∫

1
4 log

(
F ′
1F ′

F1F

)
(F ′

1F ′ − F1F ) bdω dv1 dv

≤ 0 .



3. Connections to Classical Gas Dynamics

Fluid dynamical regimes are ones in which collisions dominate. (This will
be made more precise in the next lecture.) The H-Theorem suggests that
collisions will then drive F towards a so-called local Maxwellian — namely
that

F (v, x, t) ≈ M
(
v; ρ(x, t), u(x, t), θ(x, t)

)
,

where ρ(x, t), u(x, t), and θ(x, t) are given by

ρ = 〈F 〉 , ρu = 〈v F 〉 , ρθ = 1
D〈|v − u|2F 〉 .

A local Maxwellian is generally not a solution of the Boltzmann equation.
However in fluid dynamical regimes the solution of the Boltzmann equation
is almost a local Maxwellian.



Compressible Euler Approximation

When the local Maxwellian approximation is placed into the local conser-
vation laws one obtains the compressible Euler system of gas dynamics

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u) + ∇x(ρθ) = 0 ,

∂t(ρ(
1
2|u|

2 + D
2 θ)) + ∇x · (ρu(1

2|u|
2 + D+2

2 θ)) = 0 .

Here the pressure satisfies the ideal gas law (p = ρθ) while the specific
internal energy satisfies the polytropic γ-law with γ = D+2

D (ε = D
2 θ).

Euler systems that govern more general ideal gases can be derived from
more complicated molecular models.



When the local Maxwellian approximation is placed into the local entropy
dissipation law one obtains the relation

∂t

(
ρ log

(
ρ

θ
D
2

))
+ ∇x ·

(
ρu log

(
ρ

θ
D
2

))
≤ 0 .

This is the local entropy dissipation (production) law one expects from a
local version of the second law of thermodynamics.



Compressible Navier-Stokes Approximation

Rather than present a derivation of the Navier-Stokes system based on
either the Hilbert or the Chapman-Enskog expansion, here we present a
simple balance argument similar in spirit to that used by Maxwell in 1866.
Decompose F as

F (v, x, t) = M
(
v ; ρ(x, t), u(x, t), θ(x, t)

)
+ F̃ (v, x, t) ,

where M(v; ρ, u, θ) is the local Maxwellian with (ρ, u, θ) determined by

〈F 〉 = ρ , 〈v F 〉 = ρu , 〈12|v − u|2F 〉 = D
2 ρ θ ,

and F̃ is the deviation of F from M. One sees that F̃ satisfies

〈F̃ 〉 = 0 , 〈v F̃ 〉 = 0 , 〈12|v − u|2F̃ 〉 = 0 .



Placing this decomposition into the local conservation laws yields

∂tρ + ∇x · (ρu) = 0 ,

∂t(ρu) + ∇x · (ρu ⊗ u) + ∇x(ρθ) + ∇x· S̃ = 0 ,

∂t(ρ(
1
2|u|

2 + D
2 θ)) + ∇x · (ρu(1

2|u|
2 + D+2

2 θ)) + ∇x · (S̃u + q̃) = 0 ,

where S̃ and q̃ are defined by

S̃ = 〈(v − u) ⊗ (v − u) F̃ 〉 , q̃ = 〈(v − u)1
2|v − u|2F̃ 〉 .

These are the stress and heat flux respectively. They are the only terms
that arise from F̃ .

Fluid dynamical systems are obtained by making approximations for F̃ .
The compressible Euler system is obtained by setting F̃ = 0.



In order to obtain a better fluid dynamical system, one must find a better
approximation for the deviation F̃ . One can show that F̃ satisfies the so-
called deviation equation

∂tF̃ + P̃v ·∇xF̃ + P̃v ·∇xM = B(M + F̃ ,M + F̃ ) ,

where P̃ = I − P and P is the operator given by

PG = M

[
〈G〉

ρ
+

(v − u) · 〈(v − u)G〉

θ

+

(
|v − u|2

2θ
−

D

2

)〈(
|v − u|2

D θ
− 1

)
G

〉]
.

One can show P is a projection (i.e. P2 = P). Because PF̃ = 0, one
sees P̃ = I − P is a projection onto the deviations from local equilibria.
These are orthogonal projections in L2(dv/M).



The Navier-Stokes approximation is obtained by arguing that F̃ is much
smaller than M and taking the dominant term on each side of the deviation
equation. More specifically, we make the approximations

∂tF̃ + P̃v ·∇xF̃ + P̃v · ∇xM ≈ P̃v ·∇xM ,

B(M + F̃ ,M + F̃ ) = 2B(M, F̃ ) + B(F̃ , F̃ ) ≈ 2B(M, F̃ ) .

We thereby argue that F̃ ≈ F̃NS where F̃NS satisfies

P̃v · ∇xM = 2B(M, F̃NS) .

This is the Navier-Stokes balance relation. It leads to the compressible
Navier-Stokes system, although at this stage it may not be obvious how.



The left-hand side of the Navier-Stokes balance relation has the form

P̃v · ∇xM = M

(
A

(
v − u

θ
1
2

)
:∇xu + B

(
v − u

θ
1
2

)
·
∇xθ

θ
1
2

)
,

where the non-dimensional functions A(v) and B(v) are defined by

A(v) = v ⊗ v − 1
D|v|2I , B(v) = 1

2|v|
2v − D+2

2 v .

Notice that A(v) is a traceless, symmetric matrix, while B(v) is a vector.
The solution of the Navier-Stokes balance relation is

F̃NS = −
M

ρ

(
Â(v − u; θ) :∇xu + B̂(v − u; θ) ·

∇xθ

θ
1
2

)
,

provided that Â(v; θ) and B̂(v; θ) satisfy



−
2

M
B(M, MÂ) = A(v/θ

1
2) , MÂ ⊥ 1, v, |v|2 ,

−
2

M
B(M, MB̂) = B(v/θ

1
2) , MB̂ ⊥ 1, v, |v|2 ,

with M = M(v; 1,0, θ). The linear operator on the left-hand side above
is symmetric and nonnegative definite in L2(Mdv).

Maxwell (1866) found explicit solutions to these equations for the case of
so-called Maxwell molecules, β = 0. Hilbert (1912) showed that these
equations have solutions for the hard-sphere case. More generally, he
showed the linear operator above satisfies a Fredholm alternative. This
kind of result has now been extended to all classical collision kernels such
that β > −D and b̂(ω ·n) satisfies the weak cutoff condition. One can

show that Â(v; θ) = τA(v; θ)A(v/θ
1
2) and B̂(v; θ) = τB(v; θ)B(v/θ

1
2).



Finally, the stress and heat flux can then be shown to have the form

S̃NS = −µ(θ)
[
∇xu + (∇xu)T − 2

D∇x· u I
]
,

q̃NS = −κ(θ)∇xθ ,

where µ(θ) and κ(θ) are positive functions of θ given by

µ(θ) = 1
(D+2)(D−1)

θ

〈
M(v; 1,0, θ)

∣∣∣∣∣A
(

v

θ
1
2

) ∣∣∣∣∣

2

τA(v; θ)

〉
,

κ(θ) = 1
D θ

〈
M(v; 1,0, θ)

∣∣∣∣∣B
(

v

θ
1
2

) ∣∣∣∣∣

2

τB(v; θ)

〉
.

One immediately sees that µ(θ) and κ(θ) are the viscosity and thermal
conductivity coefficients respectively. These functions of θ are the only
things in the Navier-Stokes system that depend on the collision kernel b,
and therefore the only things that depend on details of the microsopic dy-
namics. The fact that they are independent of ρ was an important early pre-
diction of kinetic theory that was subsequently confirmed by experiment.


